Full Length Article

Analysis of DNA Methylation of Wheat in Response to Low Nitrogen Stress Based on Methylation-sensitive Amplified Polymorphisms

Jinhua Liao1, Min Zhou1, Jin Fan1, Xia Hu1, Mei Tang1, Mingfu Gong1* and Yu Wu2*
1College of Life Sciences, Leshan Normal University, Leshan 614000, Sichuan, China
2Chengdu Institute of Biology, University of Chinese Academy of Sciences, Chengdu 610041, Sichuan, China
*For correspondence: gongmingfu98@163.com; wuyugood@126.com

Abstract

Abiotic stress can induce considerable changes in the composition and quality of wheat grain and cause genomic DNA methylation. Here, methylation-sensitive amplified polymorphism (MSAP) was used to detect the effect of low nitrogen stress on the extent and patterns of DNA methylation in wheat grain at 5, 8, 11, 14, 16 and 21 days post-anthesis (DPA). First, our results showed that low nitrogen stress could reduce grain N content, sodium dodecylsulfate sedimentation (SDS) volume, the amounts of high-molecular-weight glutenin subunits (HMW-GS 2, 12 and 20) and total protein. Then, at 8, 11 and 21 DPA, the overall level of DNA methylation in low nitrogen group was higher than in control group with the maximum difference of 14.1% at 21 DPA. And, at 8 DPA, methylation / demethylation revealed the highest level under low nitrogen conditions, about 17.07% -30.99% of the CCGG sites. Thus, thirteen differentially displayed DNA fragments in MSAP profiles in samples at 8 DPA were further cloned for sequencing analysis. Homology analysis for these DNA fragments showed that most of them were involved in storage matter (protein, fatty acid), some engaged in stress signaling and physiological response regulation. Moreover, the relative expression levels revealed that the expression of a demethylated fragment was increased but the expressions of two other methylated fragments decreased. In conclusion, our results suggested that low nitrogen stress could decrease SDS volume, HMW-GS amount and total protein which might be associated with DNA methylation. © 2018 Friends Science Publishers

Keywords: DNA methylation/demethylation; Gene expression; Low nitrogen; MSAP; Wheat grain

Introduction

DNA methylation affects gene expression and plays an important role in plant’s adaptation to adverse environments (Choi and Sano, 2007; Choi and Kim, 2008; Iqbal et al., 2011). Previous study indicated that salt stress can induce DNA sites demethylation, methylation and hypermethylation, with the net result being genome-wide hypomethylation. And the CCGG sequences of the salt-tolerant wheat variety were more methylated than the salt-sensitive varieties (Zhong et al., 2009; Wang et al., 2014). Thus, methylation could be a mechanism for the adaptation of plant adaptation under salt stress. Moreover, the total methylation level could be decreased in wheat under drought stress. Recent research demonstrated that the endophytic fungus SMCD 2206 improved drought tolerance in wheat co-cultured with SMCD 2206 which were associated with DNA methylation (Hubbard et al., 2014). In addition, DNA methylation in the regulatory region of the Ppd-B1 alleles improves photoperiod insensitivity and develops adaptation of wheat to a wider geographical range during breeding (Sun et al., 2014). These studies suggested that abiotic stress could induce DNA methylation in wheat.

Abiotic stress can also induce considerable changes in the composition and quality of wheat grain. For example, drought stress could significantly reduce the sodium dodecyl sulfate (SDS) sedimentation volume and carbohydrate contents including sucrose and starch (Jenner, 1994; Gooding et al., 2003; Barnabas et al., 2008). Zheng et al. (2009a, 2009b) reported that salt stress could increase grain protein in cultivars with different levels of salt tolerance and waterlogging reduce the protein and starch content in the grains. A moderately high temperature during the grain filling stage was also reported to enhance the flour protein content (Stone, 2001). Nitrogen-deficient fertilizers also affect wheat quality, such as flour protein, dough stability, and relative concentration of glutenin, unextractable polymeric protein, and relative amounts of high/low-molecular-weight glutenin subunits (HMW-GS/LMW-GS) (Park et al., 2014). However, whether the effects of nitrogen-deficient stress on wheat grain were associated with DNA methylation remain unclear.

Therefore, in the study, first, we studied the effects of nitrogen-deficiency stress on SDS volume, the amounts of HMW-GS and the total protein in wheat grain. Then, methylation-sensitive amplified polymorphism (MSAP) was used to detect the effect of nitrogen-deficiency on the extent and patterns of DNA methylation in wheat grain at 5, 8, 11, 14, 16 and 21 days post-anthesis (DPA). Moreover, differentially displayed DNA fragments in MSAP profiles

were cloned and sequenced, and their possible roles in nitrogen-deficient stress were analyzed. In addition, the relationship between DNA methylation and relative gene expression levels was analyzed by quantitative real-time PCR. These results provided preliminary but global insight into the DNA methylation of wheat exposed to nitrogen-deficient stress, and provide a foundation for further studies focused on revealing the epigenetic regulation mechanisms of the stress response in plants.

Materials and Methods

Plant Materials and Treatment

A nitrogen fertilization experiment was conducted with common wheat, *T. aestivum*, Shannong981A of HMW-GS 2, 12, and 20 associated with bad dough quality, but with a high SDS-sedimentation volume. Wheat was sown in 1.5 L pots containing farm soil mixed evenly and grown in a greenhouse in October 2013 in Chengdu (30.67°N, 104.06°E), Sichuan Province China (natural photoperiod and irradiance). Wheat was divided into two groups, low nitrogen and control group. The basic soil total N content was 1.2 g/kg. Wheat in low nitrogen group was treated with no nitrogen fertilizer, while in control group were treated with 31 mg N per plant as ammonium (NH$_4$)$_2$SO$_4$ at the beginning of tillering (GS20), 29 mg N per plant at the beginning of stem elongation (GS30) and 24 mg N per plant as ammonium (NH$_4$)$_2$SO$_4$ at the beginning of the flag leaf stage (GS37) according to Zadoks scale (Zadoks et al., 1974) (Table 1), respectively. All experiments were repeated ten times with three plants per pot. An increase in expression of genes associated with wheat storage product synthesis in the endosperm starting at 6 days, leveling off after 10 days and declining from 21 days post-anthesis (DPA) was observed (Wan et al., 2008). Thus, the developing grain samples were collected from wheat Shannong981A at 5, 8, 11, 14, 16, and 21 DPA and stored at −80°C for further use. Grain N concentration was determined by combustion with an elemental analyzer (Thermo Finnigan, Waltham, MA, USA) (Fuertes-Mendizabala et al., 2013). Total genomic DNA was extracted using a routine CTAB procedure as described by Murray and Thompson (1980) and stored at −20°C (Murray and Thompson, 1980). The mature wheat seeds were obtained at 49 DPA for quality tests.

MSAP Assay

MSAP analysis was performed as described (Tang et al., 2014). Two enzyme combinations were used, namely: HpaII/EcoRI and Mspl/EcoRI (New England Biolabs, Beverly, MA, USA). The sequence information for the adapters and primers of pre-amplification and selective amplification is provided in Table S1. The MSAP PCR products were separated on 6% denaturing polyacrylamide gel (PAGE, 6% polyacrylamide, 8 M urea) and visualized by silver staining.

Cloning and Sequence Analysis of Differentially Displayed Fragments

Differentially expressed bands in DNA methylation were excised from the gel and re-amplified using selective amplification PCR conditions. The amplified fragments were ligated into pGEM-T easy vector (TransGen) and transformed into competent *Escherichia coli* DH5α. The recombinants were screened for sequencing according to the Sanger method. A homology search was performed at the public database NCBI (http://www.ncbi.nlm.nih.gov).

Real-time Quantitative RT-PCR (qRT-PCR)

Total RNA from the wheat kernel at 8 DPA was extracted using Trizol (Omega Total RNA Kit) and first-strand cDNA was synthesized using the Super Script TM First-Strand Synthesis System (Transgen Biotech, China). The primers used for qRT-PCR analyses were designed using Primer 5.0 software (Table S2), and two normalizing housekeeping genes actin and 18S rRNA (Altenbach et al., 2002). qRT-PCR was performed using SYBR Premix ExTaq (Bio-Rad, USA) in the Bio-Rad fluorescence RT-PCR amplifier CFX96 (BioRad, USA). The PCR conditions consisted of an initial denaturation step at 95°C for 20 s, followed by 39 cycles of 10 s at 95°C, 30 s at 60°C and 30 s at 72°C. The melting curve was generated from 60°C to 95°C, read every 0.5°C, and held every 5s. The 2$^{-ΔΔCt}$ method was used to normalize and calibrate transcript values relative to the endogenous actin control. A total 18 independent samples with triplicate repeats were analyzed.

Quality Tests

The assay procedure of the SDS (Sodium dodecyl sulfate) sedimentation volume of whole meal was conducted according to the improved AACC method 56-61A (Takata et al., 1999). Subunit composition and quantitative determination of HMW were analyzed by SDS-PAGE and densitometry procedures (Lookhart et al., 1993). The total protein content of the grain were determined by Near Infrared Spectroscopy (NIR).

Results

Decreased Grain N Content Induced by Low Nitrogen Stress

The grain N content at 5, 8, 11, 14, 16 and 21 DPA in control and low nitrogen stress determined showed that grain N contents in low nitrogen group were significantly lower than in control group at 5, 8 and 11 DPA (Fig. 1). These results suggested that low nitrogen could reduce the grain N accumulation to some extent.
Analysis of DNA Methylation of Wheat Seeds / Int. J. Agric. Biol., Vol. 00, No. 0, 201x

Table 1: N source and splitting of the different N fertilization treatments at stage GS20, GS30 and GS37 in each group

<table>
<thead>
<tr>
<th>Group</th>
<th>mg N added per plant</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>GS20</td>
</tr>
<tr>
<td>Control</td>
<td>24</td>
</tr>
<tr>
<td>Low nitrogen</td>
<td>0</td>
</tr>
</tbody>
</table>

Fig. 1: Gain N content at different days post-anthesis in control and low nitrogen groups. *P<0.05

Effect of Low Nitrogen Stress on the Quality of Wheat

The quality index of the wheat under low nitrogen stress was significantly different from the control. The SDS sedimentation volume of the wheat flour in the low nitrogen group was significantly lower than in the control group. The proteins were 17.58% in the control but 14.90% in the low nitrogen group. The gel electrophoresis map showed that the amounts of HMW-GS 2, 12 and 20 in the low nitrogen group were significantly lower than those in the control. The concentration of HMW-GS 2, 12 and 20 in the low nitrogen group were 13.75, 8.77 and 16.09, but those in the control were 19.16, 10.16 and 20.32 (Fig. 2). These results indicated that low nitrogen could affect the SDS sedimentation, total protein and the accumulation of HMW-GS.

Methylation differences between wheat under low nitrogen stress and control were detected by MSAP. A total of 539 5′-CCGG-3′ site bands were amplified in both low nitrogen and control at 5, 8, 11, 14, 16 and 21 DPA. (Table 2) Both in low nitrogen and control, the number of methylated (types II + III + IV) DNA bands were determined. A total of 338-414 bands were polymorphic (types II + III + IV), which accounted for 62.71% -76.81% of all bands. The overall DNA methylation level in the low nitrogen was not always lower than in the control during the six stages of grain development. At 8, 11 and 21 DPA, the overall DNA methylation level in the low nitrogen group was higher than in the control group, with the maximum difference of 14.1%

Changes in Methylation/Demethylation induced by Low Nitrogen Stress

All possible banding patterns between control and low nitrogen groups in the six time-points were compared to investigate the changes in cytosine methylation patterns under low nitrogen stress. The changes in cytosine methylation/demethylation bands were divided into three major patterns: no change, demethylation, and methylation, which include 16 classes (Table 3). The first pattern, no change, was monomorphic with no cytosine methylation alteration and included classes A, B, C and D, indicating that the same 5′-CCGG-3′ sites were detected both in the control and low nitrogen groups. The second pattern was demethylation, which included classes E-J, and showed that cytosine was demethylated to different extents in the low nitrogen group compared to the control group. The third pattern was methylation and included classes K-P, representing the cytosine methylation events induced by low nitrogen stress. Approximately 17.07%-30.99% of the CCGG sites changed under low nitrogen stress, with the highest at 8 PDA and lowest at 11 PDA.
The percentage of the demethylated bands under low nitrogen stress was 9.28%, 13.36%, 7.24%, 8.91%, 9.83% and 5.57%, whereas the percentage of methylated bands was 7.79%, 17.63%, 9.83%, 9.83%, 8.91% and 22.63% in low nitrogen group at 5, 8, 11, 14, 16 and 21 DPA, respectively. These results demonstrated that low nitrogen mainly induced DNA demethylation in grains at 8 and 21 DPA. In general, low nitrogen induced more DNA demethylation than DNA methylation in wheat grain.

Sequence Analysis of Polymorphic Fragments

As described above, changes in methylation fluctuates during wheat grain development, with the highest found at 8 DPA. To annotate the changed bands representing methylation changes, 13 differentially amplified bands in samples at 8 DPA, numbered Ta1–Ta13, were purified, cloned, and sequenced (Table 4). Among these 13 differentially methylated DNA bands, five fragments were methylated, and eight demethylated under low nitrogen (Fig. 3). The length of these 15 sequences ranged from 134 bp to 564 bp. The resulting sequences were BLAST searched against the databases at NCBI (http://blast.ncbi.nlm.nih.gov). Of the five methylated fragments (Ta1–Ta5), Ta1 was homologous to the retro-transposons of *T. aestivum*, whereas Ta1, Ta2, Ta3, Ta4 and Ta5 were homologous to genes involved in the metabolism of storage substance, namely, *T. urdulidum* HMW glutenin, *T. aestivum*, storage protein activator (spa), *A. tauschii* prolamin/LMW glutenin, and *T. aestivum* cytosolic acetyl-CoA carboxylase (fatty acid synthesis).

Table 2: Different types of MSAP cytosine methylation levels under low nitrogen and control

<table>
<thead>
<tr>
<th>Type</th>
<th>5DPA</th>
<th>8DPA</th>
<th>11DPA</th>
<th>14DPA</th>
<th>16DPA</th>
<th>21DPA</th>
</tr>
</thead>
<tbody>
<tr>
<td>I(1)</td>
<td>161</td>
<td>151</td>
<td>132</td>
<td>146</td>
<td>134</td>
<td>135</td>
</tr>
<tr>
<td>II(10)</td>
<td>156</td>
<td>168</td>
<td>198</td>
<td>189</td>
<td>183</td>
<td>193</td>
</tr>
<tr>
<td>III(01)</td>
<td>127</td>
<td>127</td>
<td>104</td>
<td>111</td>
<td>100</td>
<td>104</td>
</tr>
<tr>
<td>IV(00)</td>
<td>95</td>
<td>93</td>
<td>105</td>
<td>93</td>
<td>122</td>
<td>107</td>
</tr>
<tr>
<td>Tas</td>
<td>539</td>
<td>539</td>
<td>539</td>
<td>539</td>
<td>539</td>
<td>539</td>
</tr>
<tr>
<td>Tms</td>
<td>378</td>
<td>388</td>
<td>407</td>
<td>393</td>
<td>405</td>
<td>404</td>
</tr>
<tr>
<td>Fms</td>
<td>222</td>
<td>220</td>
<td>209</td>
<td>204</td>
<td>222</td>
<td>211</td>
</tr>
<tr>
<td>Tmr</td>
<td>70.13</td>
<td>71.9</td>
<td>75.51</td>
<td>72.91</td>
<td>74.95</td>
<td>75.14</td>
</tr>
<tr>
<td>Fmr</td>
<td>41.19</td>
<td>40.82</td>
<td>38.78</td>
<td>37.84</td>
<td>39.70</td>
<td>38.78</td>
</tr>
<tr>
<td>Hmr</td>
<td>28.94</td>
<td>28.94</td>
<td>31.17</td>
<td>30.79</td>
<td>31.74</td>
<td>31.17</td>
</tr>
</tbody>
</table>

Table 3: The different patterns of DNA methylation changes induced by low nitrogen

<table>
<thead>
<tr>
<th>Classes</th>
<th>5DPA</th>
<th>8DPA</th>
<th>11DPA</th>
<th>14DPA</th>
<th>16DPA</th>
<th>21DPA</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>133</td>
<td>103</td>
<td>110</td>
<td>125</td>
<td>120</td>
<td>112</td>
</tr>
<tr>
<td>B</td>
<td>134</td>
<td>135</td>
<td>159</td>
<td>145</td>
<td>166</td>
<td>139</td>
</tr>
<tr>
<td>C</td>
<td>108</td>
<td>80</td>
<td>85</td>
<td>89</td>
<td>77</td>
<td>76</td>
</tr>
<tr>
<td>D</td>
<td>72</td>
<td>54</td>
<td>79</td>
<td>79</td>
<td>79</td>
<td>60</td>
</tr>
<tr>
<td>Total</td>
<td>447</td>
<td>372</td>
<td>372 (69.01%)</td>
<td>447</td>
<td>438 (81.26%)</td>
<td>438 (81.26%)</td>
</tr>
<tr>
<td>E</td>
<td>20</td>
<td>16</td>
<td>17</td>
<td>24</td>
<td>24</td>
<td>24</td>
</tr>
<tr>
<td>F</td>
<td>5</td>
<td>7</td>
<td>7</td>
<td>7</td>
<td>10</td>
<td>5</td>
</tr>
<tr>
<td>G</td>
<td>1</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>H</td>
<td>11</td>
<td>16</td>
<td>5</td>
<td>4</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>J</td>
<td>2</td>
<td>6</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>6</td>
</tr>
<tr>
<td>Total</td>
<td>50</td>
<td>72</td>
<td>72 (13.36%)</td>
<td>39</td>
<td>48 (8.91%)</td>
<td>53 (9.83%)</td>
</tr>
<tr>
<td>K</td>
<td>1</td>
<td>36</td>
<td>14</td>
<td>11</td>
<td>12</td>
<td>12</td>
</tr>
<tr>
<td>L</td>
<td>7</td>
<td>14</td>
<td>10</td>
<td>9</td>
<td>5</td>
<td>12</td>
</tr>
<tr>
<td>M</td>
<td>0</td>
<td>3</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>10</td>
</tr>
<tr>
<td>N</td>
<td>13</td>
<td>34</td>
<td>17</td>
<td>16</td>
<td>19</td>
<td>13</td>
</tr>
<tr>
<td>O</td>
<td>10</td>
<td>14</td>
<td>11</td>
<td>13</td>
<td>9</td>
<td>19</td>
</tr>
<tr>
<td>P</td>
<td>1</td>
<td>4</td>
<td>0</td>
<td>2</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Total</td>
<td>127</td>
<td>95</td>
<td>95 (17.63%)</td>
<td>53</td>
<td>53 (9.83%)</td>
<td>48 (8.91%)</td>
</tr>
</tbody>
</table>

No change: A(ItoI), B(Iito II), C(Iito III), D(Iito IV), F(Iito IV to II), G(Iito III to II), H(Iito III to I), J(Iito II to I), K(Iito III to I), L(Iito II to I), M(Iito II to IV), N(Iito IV to II), O(Iito IV to I), P(Iito II to I)
Both Ta3 and Ta4 shared low homology with the sequence located at the different loci of JX295577.2. Of the eight demethylated fragments (Ta6–Ta13), Ta6, Ta8, Ta10 and Ta11 were homologous to genes of *T. aestivum* mitochondrion (respiration), *B. distachyon* auxin response factor (hormone regulation), *T. aestivum* isolate TAEST Sukkula retrotransposon, and the retrotransposon of *T. turgidum* HMW glutenin, respectively. The methylated fragments of Ta1 showed low homology with the demethylated fragments of Ta11 but were both homologous to the retrotransposon of gene *T. turgidum* HMW glutenin AY499481.1, respectively. In addition, Ta3, Ta4, Ta5, Ta6, Ta9 and Ta13 were located in the non-coding regions of the homologous gene. Thus, under nitrogen-deficient treatment, both coding and non-coding regions could be involved in methylation or demethylation changes at the cytosine nucleotide.

Expression Analysis of Polymorphic Fragments in Response to Low Nitrogen Stress

The expression analysis of three MSAP polymorphic genes was performed using qRT-PCR. Ta1 was methylated at 8 DPA where as Ta8 and Ta11 were demethylated at the same development time (Fig. 4). On the one hand, low nitrogen stress slightly up-regulated the expression levels of the demethylated genes of Ta8 and Ta11 compared with the control group. On the other hand, it significantly down-regulated the expression levels of the methylated genes of Ta1 compared with that in the control group at 8 DPA.

Discussion

This research showed that the total genomic methylation level was relatively high in wheat grain, accounting for an
average of 71.57% and 73.13% in control and low nitrogen treatment at six development phases, respectively. The resulting total genomic methylation level in this study was significantly higher than in perennial ryegrass (57.67%), maize (33%) and even in the germinating seed of another wheat variety (Meng et al., 2012; Shan et al., 2013; Tang et al., 2014). Thus, the methylation status differs among various plants and varieties. Even in different parts of same tissue, methylation levels vary. For example, during seed development in rice, DNA in the endosperm is hypomethylated compared with in the embryo (Zemach et al., 2010).

Evident differences in SDS sedimentation volume, content of total protein and HMW-GS of wheat flour were observed between low nitrogen and control groups. SDS sedimentation volume gives a good indication of the end-product quality of wheat and is closely associated with protein content and protein composition, specially HMW-GS, LMW-GS and prolamin (Blackman and Gill, 1980; Carter et al., 1999). Nitrogen-deficient stress affected protein production which affected the SDS sedimentation volume. Methylation analysis results confirmed this. Of these differentially amplified bands, the homologous genes of Ta1, Ta2, Ta3, Ta4 and Ta11, were directly related to nitrogen metabolism. Among them, Ta1 and Ta11 were homologous to the retro-transposon of T. turgidum HMW glutenin. Ta2, Ta3 and Ta4 were homologous to the regulation of T. aestivum storage protein activator (spa), the prolamin regulation regions of Aegilops tauschii chromosome 1Ds, and the LMW-GS regulation regions of Aegilops tauschii chromosome 1Ds. Besides, Ta8 was homologous to the B. distachyon auxin response factor related to the abiotic stress-response. Simultaneously, Ta8 involved in the regulation of wheat quality (Narayan and Nair, 1990; Sekhon and Singh, 1994).

Of all the 13 differentially amplified bands, Ta1 and Ta11 were explicitly involved in HMW glutenin synthesis. Ta1 was methylated, whereas Ta11 were demethylated. Ta1 and Ta11 were homologous to AY368673.1 and AY494981.1, respectively. Both were the retro-transposon of T. turgidum A genome HMW glutenin A gene locus which could affect the expression of HMW-GS. That the decrease of the SDS sedimentation volume and the reduction in the accumulation of HMW-GS 2, 12 and 20 in this study confirmed the content of HMW-GS are directly linked to wheat quality (Johansson et al., 1999; Deng et al., 2006, 2007).

Three homologues of MSAP loci were selected to study transcriptional changes. Of the three genes- Ta1 and Ta11 were closely related to HMW whereas Ta8 was closely related to the abiotic stress-response. Ta1 was methylated (10 to 00) at 8 DPA; Ta8 was demethylated (00 to 10) at 8 DPA; Ta11 was demethylated at 8 DPA (01 to 10). The results showed that nitrogen-deficiency increased the expression of Ta8 and Ta11 (Fig. 4). By contrast, the expression of Ta1 was reduced by nitrogen-deficiency. Thus, nitrogen-deficiency triggered both cytosine methylation (Ta1), and cytosine demethylation in genes (Ta8 and Ta11). Nitrogen-deficiency may affect gene expression by changing the methylation status in its cytosine nucleotide as in other stresses (Choi and Sano, 2007; Shan et al., 2013; Tang et al., 2014).

DNA methylation and demethylation are associated with either transcriptional repression or activation (Choi and Sano, 2007). Though, the methylated DNA levels at 8 DPA increased slightly by 2.6% after nitrogen-deficient stress, methylation or demethylation occurred at 167 sites (30.98%). It was demonstrated that nitrogen-deficient stress had a great impact on genomic methylation alterations in wheat grain and then affected the expression of many gene. In our study, these affected genes might to be involved in storage matter (protein, fatty acid), stress signaling and physiological response regulation. Ta8 was homologous to the B.distachyon auxin response factor related to the abiotic stress-response. The gene was demethylated under nitrogen deficient conditions to improve adaptation to nitrogen-deficient stress in wheat (Narayan and Nair, 1990; Sekhon and Singh, 1994).

In this study, the fact that nitrogen-deficient stress increased the total DNA methylation level in wheat grain contradicted that many stress such as drought stress could decrease the total DNA methylation level in plant (Zhong et al., 2009; Wang et al., 2011; Fan et al., 2012). Homology analysis showed that most of these fragments were predicted to be involved in storage matter (protein, fatty acid) and very few fragments were predicted to be involved in stress signaling. These results indicated that though the extent of the nitrogen deficiencies in this study was so small not to affect the normal growth and development of wheat plants and the protein quality of some wheat lines (dates not shown).

The 21 DPA was also an important time in this study. At 8, 11 and 21 DPA, the overall DNA methylation level in the treated samples was higher than in the control samples, with the maximum difference of 14.1% at 21 DPA. The overall DNA methylation level in the control at 21 DPA (74.21%) was significantly less than at 16 DPA (62.71%).
Based on the theory that demethylation are associated with transcriptional activation, there was another expression peak of gene about wheat storage product at 21 DPA. This finding was not consistent with the previous research results that expression of genes associated with wheat storage product synthesis in the endosperm decline from 21 DPA (Wan et al., 2008). That may be because the seeds of special wheat varieties Shannong981A were obviously bigger than other wheat lines and the gene expression peak at 21 DPA had a drastic effect on the formation and accumulation of storage substance. But the overall DNA methylation level in the treated samples at 21 DPA (76.81%) was somewhat higher than at 16 DPA (71.42%). The genes expression was inhibited by the nitrogen-deficient stress and stopped the synthesis of storage substance prematurely.

The methylation/demethylation of transposons can affect programmed genome epigenetic regulation and the expressions of downstream genes in plants, which can be altered by environmental stresses (Yaish, 2013). In this study, of the 13 fragments that were sequenced in wheat, these five fragments (Ta1, Ta9, Ta10, Ta11 and Ta13) were predicted to be retro-transposons. Ta1 was methylated under stress. Transposon inactivity is necessary for the stable maintenance of the genome and these three methylated retrotransposons could avoid DNA sequence changed by adverse environmental conditions (Mann et al., 2015).

The BLAST results and transcriptional changes in the MSAP fragments indicated that epigenetic changes such as the methylation states in the wheat grain genome are likely very important regulatory mechanisms for wheat adaptation to low nitrogen stress. Thus the methylation states have an important effect on the wheat gain quality. Our study provides valuable information for further studies focusing on the epigenetic regulation of responses to low nitrogen in wheat grain.

Conclusion

Alterations in DNA methylation patterns play an integral role in regulating growth and development of plant. The epigenetic changes in the wheat genome regulated the grain’s development to adapt to changes in the environment, induced changes in grain composition, and eventually affected wheat quality.

Acknowledgements

This work was supported by the Scientific Research Project of Leshan Normal University (XJ17006), the project of the Science and Technology Department in Sichuan province (2018NFP0107), the Scientific Research Fund of Sichuan Provincial Education Department (15TD0026), the Scientific Research Fund of Sichuan Provincial Education Department (16ZA0306).

References

(Received 16 July 2018; Accepted 23 August 2018)