Full Length Article

Unveiling the Foliar Epidermal Anatomical Characteristics of *Artemisia* L. (Asteraceae) from Northeast (Gilgit-Baltistan), Pakistan

Adil Hussain¹*, Muhammad Q. Hayat², Sumaira Sahreen³ and Syed A.I. Bokhari¹

¹Department of Bioinformatics and Biotechnology, International Islamic University Islamabad, 46000 Pakistan
²Department of Plant Biotechnology, Atta-ur-Rahman School of Applied Biosciences, National University of Sciences and Technology Islamabad, 46000 Pakistan
³Botanical Sciences Division, Pakistan Museum of Natural History, Garden Avenue Shakarparian Islamabad 46000, Pakistan

*For correspondence: adil.phdbt31@iiu.edu.pk

Abstract

This study for the first time examined foliar epidermal anatomical characteristics (Epidermal cells, types of stomata and trichomes) of thirteen *Artemisia* species (Including rare ones) with Light microscopy (LM) and Scanning electron microscopy (SEM) from the Northeast (Gilgit-Baltistan) region of Pakistan. The epidermal cells varied from polygonal to irregular and elongate in shape, while wavy to smooth in margins. This investigation revealed four different types of stomata viz; Anomocytic, diacytic, anomotetraacytic and anisocytic, which were unequally scattered on both the adaxial and abaxial surfaces of studied *Artemisia* species. Ten different types of trichomes were observed in the studied species. Four types of glandular trichomes including peltate, pluricellular, capitate and thin necked were observed, whereas six types of non-glandular trichomes including, Aduncate, unicellular calavate, conical type, stinging hair type, unicellular tector and unicellular filiform were observed. This study authenticated that the morphology of these foliar anatomical characteristics in amalgamation with other features are helpful for the species delimitation within the genus *Artemisia*. © 2019 Friends Science Publishers

Keywords: *Artemisia*; Epidermal cells; Stomatal diversity; Trichomes variation; Gilgit-baltistan

Introduction

Artemisia L. (family Asteraceae; tribe Anthemideae) is well-known for having antimalarial properties in its species. This genus is taxonomically complex comprising ~500 herbs and shrubs (Martin et al., 2003), many of which have significant economic importance because they possess antiseptic, antispasmodic, antimicrobial, antitumor, hepatoprotective and antiurheumatic properties (Terra et al., 2007). The genus is distributed mostly in the northern hemisphere’s temperate sectors. A limited number of *Artemisia* species are found in the southern hemisphere (Oberprieler et al., 2009). Central Asia is recognized as the center of diversity for *Artemisia*. Ancient microfossil of *Artemisia* are known from the Eocene end (Zaklinskaja, 1957) and the Miocene radiation (Wang, 2004).

For a long time, the infrageneric classification of this diverse genus has presented a challenge for taxonomists. These historical developments were well documented in the former studies (Torrell et al., 1999; Valles and McArthur, 2001). Tournefort (1700), Bremer (1994) and Ghafoor (2002), all the studies concerning the taxonomy and classification of *Artemisia* were based on capitulum morphology. They recognized four sections or subgenera in the genus *Artemisia* (sensu lato) i.e., *Artemisia*, *Absinthium*, *Dracunculus* and *Seriphidium*. Throughout this period, the status of *Seriphidium* as a separate genus or a subgenus of *Artemisia* remained a topic of debate among taxonomists. For example, the former treatment was adopted by Ling (1982), Bremer and Humphries (1993), Bremer (1994), Ling (1995) and Ghafoor (2002) while the latter was adopted by Kornkven et al. (1998, 1999), Torrell et al. (1999), Watson et al. (2002) and D’Andrea et al. (2003).

In the light of recent studies based on microscopic and molecular approaches, the delimitations of classic subgenera have been rearranged (Sanz et al., 2008). Researchers strongly agreed that the critical anatomical enquiry of rarer morphological attributes with molecular phylogenies is fruitful and this union could be a power tool to resolve taxonomic conflicts (Scotland et al., 2003).

The leaf epidermal cells features play significant role in the identification of different plant genera and species (Scatena et al., 2005; Taia, 2005; Yang and Lin, 2005). These features holds numerous beneficial diagnostic properties like shape and size of stomata, no of subsidiary cells, guard cells profile, and structural particularities of cell walls and trichomes types (Dickison, 2000). That’s why; taxonomists are paying attention towards foliar epidermal anatomical examinations with the aim of resolving conflicts associated with taxonomy and classification (Fang and Fan, 1993).

To cite this paper: Hussain, A., M.Q. Hayat, S. Sahreen and S.A.I. Bokhari, 201x. Unveiling the foliar epidermal anatomical characteristics of *Artemisia* L. (asteraceae) from northeast (Gilgit-Baltistan), Pakistan. *Int. J. Agric. Biol.* 00: 000‒000
The differences of epidermal attributes between species might be due to their different genetic makeup or due to some environmental effects (Stenglein et al., 2005).

Trichomes are very specialized structures present in the foliar epidermal cells of plants and divided into two main categories (glandular and non-glandular). An important aspect of the glandular trichomes is their ability to store, synthesize and secrete different types of metabolites. These metabolites include organic acids, terpenoids and alkaloids, polysaccharides, polyphenols and proteins (Hallahan et al., 2000). Consequently, they are the significant foundations of essential chemical compounds employed in the pharmaceutical industry, cosmetics/perfumes and the food additives (Callow, 2000; Wagner et al., 2004).

Although, the diversity of foliar characters of some Artemisia species have previously been reported from Pakistan (Hayat et al., 2009a, b), but little is known about the importance of these foliar anatomical attributes present in rare Artemisia species from the Northeast (Gilgit-Baltistan) region of Pakistan. In this research we scrutinized the foliar epidermal anatomical features of Artemisia species with LM and SEM techniques. This study will narrate the utilization of foliar attributes for their conceivable practical role in the taxonomy of genus and for the future inquiries based on medicinal significance.

Materials and Methods

Study Area

Gilgit-Baltistan (Formerly called Northern Areas) is a Northeastern region of Pakistan situated between 74°–77°E and 34°–37°N, covering an area of about 45224 km². The altitude of this region ranges from ±1400 to 8611 m. The area is divided into seven main districts i.e., Gilgit, Skardu, Hunza-Nagar, Astore, Diamer, Ghizer and Ghanche. This region includes world renowned mountain ranges like the Karakorum, Hindu Kush and the Himalayas. There are several peaks with heights above 7000 m; including Godwin Austin (K-2, 8611 m), Rakaposhi (7788 m) and Deran peak (7268 m). The world’s largest glaciers are also found in this region, such as Baltoro Glacier, which extends for about 62 km with an area of 529 km² (Anonymous, 2003). This area is well known for a great diversity of plants (Shinwari, 2010) and is a center for traditional medicinal herbs (Shinwari and Gilani, 2003).

Plant Collection and Sampling

Extensive field surveys were conducted over a period of two years (2016–2017) and Artemisia species were collected from their natural habitat from different regions of Northeast (Gilgit-Baltistan) region of Pakistan (Fig. 1). The collected plant specimens were primarily authenticated and recognized by a specialist at the Botanical Science Division, Pakistan Museum of Natural History Islamabad. The source and collection details along with GPS data of studied Artemisia species are provided in Table 1.

Herbarium Preparation and Plant Identification

Thirteen species of Artemisia collected from different parts of Northeast (Gilgit-Baltistan) of Pakistan were included in the study and the voucher specimens were submitted to the herbarium of Pakistan Museum of Natural History (PMNH). Plants were identified on the basis of morphological data, molecular data and Flora of Pakistan (Ali and Qaiser, 1993–2010).

Light Microscopy (LM)

For light microscopy, dried specimen of each plant from herbarium was taken. Primarily, 30% nitric acid and about 1.5 g of potassium chloride was taken in a test tube, the leaves were boiled for few min (2–3 min) in the solution. After boiling, the leaves were washed with deionized water. Peeling of epidermis was performed and 60% potassium hydroxide solution was used to keep the peel for 2 h. Finally, these peels were transferred to lactic acid and glass slides were prepared for LM investigation (Hayat et al., 2009b).

Scanning Electron Microscopy (SEM)

From the dried herbarium specimen, 4–5 mm of top and bottom leaf was taken and then it was fixed in glutaraldehyde (6%) with 0.05 M sodium cacodylate and kept for 24 h. The specimen was then washed with distilled water for 2–3 times by means of the pasture pipette. Ethanol (10–100%) was used to dehydrate the samples for 20 min per wash. The specimens were then kept in 100% ethanol in the refrigerator for further use. Each dried specimen was mounted on aluminum specimen stub with carbon on both sides. Sputter coating was done with gold particles in the sputtering chamber of Pelco Auto sputter Coater (SC-7, Ted Pella Inc). Surface of the leaves was scrutinized at variable magnifications using Philips XL30 TMP (FEI Company) scanning electron microscope, operated at 10–20 kV accelerated voltage, at the electron microscopy core laboratory, Tupper Hall, University of California Davis USA. All the demonstrative structures observed were taken digitally with the help of Microsoft image programmed for windows. The quantitative measurements of each characteristic were recorded for 4 to 5 times and averaged.

For the identification of epidermal cells and stomata, the basic criterion was adapted from Hayat et al. (2010). Glandular and non-glandular trichomes were identified on the basic criterion given by Hayat et al. (2009a, b), Popa and Sipos (2009) and Shaheen et al. (2009). For some specific kind of epidermal cells, stomata and trichomes, simple self-explanatory terms were also use and results are presented in the form of Micrographs and Table.
Table 1: Collection details of Artemisia species from Gilgit-Baltistan region of Pakistan with voucher specimen number

<table>
<thead>
<tr>
<th>Artemisia Spp.</th>
<th>Latitude</th>
<th>Longitude</th>
<th>Locality</th>
<th>Voucher specimen number</th>
<th>Collectors</th>
</tr>
</thead>
<tbody>
<tr>
<td>A. annua*</td>
<td>N-35°54.949</td>
<td>E-74°18.508</td>
<td>Barmas paen Gilgit</td>
<td>PMNH-41582</td>
<td>Adil Hussain and Tanseer</td>
</tr>
<tr>
<td>A. austriaca*</td>
<td>N-36°01.609</td>
<td>E-74°33.255</td>
<td>Bagrote valley Gilgit</td>
<td>PMNH-41643</td>
<td>Adil Hussain and Tanseer</td>
</tr>
<tr>
<td>A. chinensis*</td>
<td>N-35°55.491</td>
<td>E-74°23.867</td>
<td>Danyore Oshkandas Gilgit</td>
<td>PMNH-41608</td>
<td>Adil Hussain and Tanseer</td>
</tr>
<tr>
<td>A. chamaemelifolia*</td>
<td>N-35°26.585</td>
<td>E-75°27.011</td>
<td>Shangriilla Skardu</td>
<td>PMNH-41722</td>
<td>Adil Hussain and Tanseer</td>
</tr>
<tr>
<td>A. chamaemelifolia*</td>
<td>N-36°09.622</td>
<td>E-74°11.622</td>
<td>Naltar valley Gilgit</td>
<td>PMNH-41630</td>
<td>Adil Hussain and Tanseer</td>
</tr>
<tr>
<td>A. argyi*</td>
<td>N-35°54.951</td>
<td>E-74°18.503</td>
<td>Barmas paen Gilgit</td>
<td>PMNH-41583</td>
<td>Adil Hussain and Tanseer</td>
</tr>
<tr>
<td>A. indica</td>
<td>N-36°15.250</td>
<td>E-73°24.240</td>
<td>Yasin Gläzer</td>
<td>PMNH-41694</td>
<td>Adil Hussain and Tanseer</td>
</tr>
<tr>
<td>A. gmelini</td>
<td>N-36°08.967</td>
<td>E-74°12.112</td>
<td>Naltar valley Gilgit</td>
<td>PMNH-41621</td>
<td>Adil Hussain and Tanseer</td>
</tr>
<tr>
<td>A. herba alba</td>
<td>N-35°54.061</td>
<td>E-74°12.762</td>
<td>Kargah nala Gilgit</td>
<td>PMNH-41599</td>
<td>Adil Hussain and Tanseer</td>
</tr>
<tr>
<td>A. montana*</td>
<td>N-35°30.883</td>
<td>E-75°40.115</td>
<td>Hashupi Shigar Skardu</td>
<td>PMNH-41708</td>
<td>Adil Hussain and Tanseer</td>
</tr>
<tr>
<td>A. tourneforitiana</td>
<td>N-35°25.405</td>
<td>E-75°44.507</td>
<td>Shigar valley Skardu</td>
<td>PMNH-41704</td>
<td>Adil Hussain and Tanseer</td>
</tr>
<tr>
<td>A. verlotiorum*</td>
<td>N-36°08.543</td>
<td>E-73°51.721</td>
<td>Bubbar Ghizer</td>
<td>PMNH-41684</td>
<td>Adil Hussain and Aman</td>
</tr>
<tr>
<td>A. vulgaris</td>
<td>N-36°20.508</td>
<td>E-74°52.277</td>
<td>Shishkat Hunza-Nagar</td>
<td>PMNH-41646</td>
<td>Adil Hussain and Aman</td>
</tr>
</tbody>
</table>

The voucher numbers have been obtained from Pakistan Museum of Natural History and its code is PMNH. * Represents rare Artemisia species from the Northeast (Gilgit-Baltistan) region of Pakistan.

Results

Epidermal Cells

This study on Artemisia species showed variations in their leaf epidermal anatomical attributes, such as the epidermal cells structure, stomata and trichomes. Epidermal cells investigated were varied from polygonal to elongate and irregular in shape, while smooth and wavy in margins (Fig. 2 and 3). Majority of Artemisia species like A. annua (Fig. 2A and 3A), A. chamaemelifolia (Fig. 2C), A. tourneforitiana (Fig. 2D and 3E), A. verlotiorum (Fig. 2E and 3F); A. indica (Fig. 2F and 3D), A. chinensis (Fig. 2G and 3B), A. austriaca (Fig. 2H), A. gmelini (Fig. 2I), A. vulgaris (Fig. 2K and 3G) and A. dubia (Fig. 3C) showed irregular epidermal cells shape with wavy walls. A. herba alba showed elongated shape of cells with smooth walls (Fig. 2J). A. argyi and A. montana showed polygonal shape with smooth walls (Fig. 2B and 2L). The qualitative and quantitative attributes of all the epidermal cells of studied Artemisia species based on SEM and LM investigations (Table 2).

Stomatal Diversity

In this study, total 4 types of stomata were noticed in 13 different species of Artemisia. For all species, stomata were observed on both foliar surfaces, predominantly on the abaxial surface. These types of stomata were: Anomocytic, anisocytic, anomotetracytic and diacytic. The details based on SEM and LM observations of the stomata types are provided in Table 3.

Anomocytic type of stomata was found in A. annua (Fig. 4A), A. argyi (Fig. 4B), A. indica (Fig. 4F) A. austriaca (Fig. 4H), A. herba alba (Fig. 4J) and A. montana (Fig. 4L). Diacytic types of stomata were found in A. chamaemelifolia (Fig. 4C). The abaxial side of A. tourneforitiana (Fig. 4D) showed anomocytic while the adaxial surface showed anomotetracytic type of stomata. A. chinensis (Fig. 4G) and A. gmelini (Fig. 4I) showed Anomotetracytic type of stomata. Anisocytic type of stomata was noticed in A. vulgaris (Fig. 4K) and A. verlotiorum (Fig. 4E).

Table 2: Qualitative and quantitative foliar epidermal cells characteristics of different Artemisia species

<table>
<thead>
<tr>
<th>Artemisia spp.</th>
<th>Surface Shape</th>
<th>Margin</th>
<th>Length μm</th>
<th>Width μm</th>
</tr>
</thead>
<tbody>
<tr>
<td>A. annua L.</td>
<td>AB</td>
<td>Irregular</td>
<td>Wavy</td>
<td>36.11</td>
</tr>
<tr>
<td>A. austriaca</td>
<td>AD</td>
<td>Irregular</td>
<td>Wavy</td>
<td>41.87</td>
</tr>
<tr>
<td>A. chamaemelifolia</td>
<td>AB</td>
<td>Irregular</td>
<td>Wavy</td>
<td>42.19</td>
</tr>
<tr>
<td>A. argyi</td>
<td>AD</td>
<td>Irregular</td>
<td>Wavy</td>
<td>32.78</td>
</tr>
<tr>
<td>A. gmelini</td>
<td>AD</td>
<td>Irregular</td>
<td>Wavy</td>
<td>23.73</td>
</tr>
<tr>
<td>A. herba alba</td>
<td>AD</td>
<td>Irregular</td>
<td>Wavy</td>
<td>20.44</td>
</tr>
<tr>
<td>A. indica</td>
<td>AD</td>
<td>Irregular</td>
<td>Wavy</td>
<td>29.04</td>
</tr>
<tr>
<td>A. montana</td>
<td>AD</td>
<td>Elongated</td>
<td>Smooth</td>
<td>34.04</td>
</tr>
<tr>
<td>A. tourneforitiana</td>
<td>AD</td>
<td>Irregular</td>
<td>Wavy</td>
<td>21.79</td>
</tr>
<tr>
<td>A. verlotiorum</td>
<td>AD</td>
<td>Irregular</td>
<td>Wavy</td>
<td>32.78</td>
</tr>
<tr>
<td>A. vulgaris L.</td>
<td>AD</td>
<td>Irregular</td>
<td>Wavy</td>
<td>30.69</td>
</tr>
</tbody>
</table>

AB= Abaxial, AD= Adaxial

The qualitative and quantitative attributes of all stomata types observed in Artemisia species based on SEM investigations are given in Table 3.

Variation in Trichomes

For the first time in this study, distribution of foliar trichomes in 13 rare Artemisia species collected from the Northeast (Gilgit-Baltistan) region of Pakistan were assessed. A total of 10 main types of trichomes (glandular and non-glandular) were observed using light microscopy and scanning electron microscopic observations (Fig. 5, 6 and 7). Four types of glandular trichomes including peltate, pluricellular, capitae and thin necked were observed.
while six types of nonglandular trichomes including, aduncate, unicellular calavate, conical type, stinging hair type, unicellular tector and unicellular filiform were observed. The qualitative and quantitative attributes of all glandular and non-glandular trichomes observed in Artemisia species based on SEM and LM are provided (Table 4 and 5). The details of all the investigated trichomes are given below:

(I). **Capitate trichomes**: These glandular trichomes have ellipsoid like appearance. In this study we found these types of trichomes in A. argyi (Fig. 5B), A. dubia (Fig. 7C), A. verlotiorum (Fig. 5E), A. tournefortiana (Fig. 5D) and A. vulgaris (Fig. 5J).

(II). **Peltate trichomes**: These trichomes are non-glandular that look like a ball with multicellular structures and are common in austriaca (Fig. 5F), A. montana (Fig. 5G) A. indica, (E) A. tournefortiana, (F) A. verlotiorum, (G) A. vulgaris (Scale bar = 50-100 μm)

(III). **Pluricellular trichomes**: These glandular trichomes are long with 2 to 5 cells. They look broader from the base and tapering towards the top. These type of trichomes are found in A. annua (Fig. 5A and 7E) and A. chamaemelifolia (Fig. 5C and 7A).
(IV). **Thin neck trichomes:** They have short neck with large head and these are glandular trichomes are found in *A. gmelinii* (Fig. 5I).

(V). **Conical type trichomes:** These are non-glandular trichomes present in conical shape having a circular base tapering towards the apex. In this study we found these types of trichomes in *A. chinenensis* (Fig. 6E).

(VI). **Stinging hair trichomes:** These trichomes are sharp with a stinger like apex. These trichomes are non-glandular and are found in *A. argyi* (Fig. 6A).

(VII). **Aduncate:** These types of trichomes are non-glandular. They are long with curved or hook like apex and are present in *A. verlotiorum* (Fig. 6C), *A. indica* (Fig. 6D and 7F) and *A. dubia* (Fig. 7G).

(VIII). **Unicellular calavate:** These trichomes are also non-glandular. They are short and narrow from the base and thicker at the apex. These types of trichomes were seen in *A. tournefortiana* (Fig. 6B).

(IX). **Unicellular filiform:** These trichomes are sharper at the apex. These trichomes are non-glandular and are found in *A. austriaca* (Fig. 6F).

(X). **Unicellular tector:** They are non-glandular. They are present in clusters or thread like. These types of trichomes are found in *A. herba alba* (Fig. 6G).

Discussion

The foliar epidermal characteristics are considered generally as a fruitful tool for determining taxonomic affiliations within the genus *Artemisia*. SEM is a better option concerning taxonomic resolutions in the genus *Artemisia* because; it gives a clear structure than other traditional microscopic techniques by showing distinct aspects of important morphomorphological characters (Hayat et al., 2010).
and wavy margins, second with elongated shape and smooth margins and third with polygonal shape and smooth margins (Fig. 2 and 3). These types of epidermal cells in *Artemisia* species were also reported in previous studies of Rabie *et al.* (2006) and Hayat *et al.* (2010). But the quantitative measurements of epidermal cells recorded here are somewhat different from the values reported by Rabie *et al.* (2006) and Hayat *et al.* (2010). It might be due to some environmental fluctuations faced by *Artemisia* species. For example, the variations in epidermal cells of both abaxial and adaxial surfaces, also explained that *Artemisia* species (*A. herba alba*), which had elongated epidermal cells with smooth walls. Some species including *A. argyi*, and *A. montana* have polygonal type cells with smooth walls. Other species like, *A. annua*, *A. austriaca*, *A. chamaemelifolia*, *A. chinensis*, *A. dubia* *A. gmelinii*, *A. indica*, *A. tournefortiana*, *A. verlotiorum* and *A. vulgaris* showed irregular shape with wavy margins. A majority of studied rare *Artemisia* species including *A. argyi*, *A. chamaemelifolia*, *A. chinensis*, *A. montana* and *A. austriaca* were not examined by other researchers since many years for their foliar anatomical attributes. Hayat *et al.* (2010) disclosed the foliar epidermal anatomy of some *Artemisia* species and resolved the subgeneric classification of genus *Artemisia* based on these features. The utilization of foliar anatomical characteristics for taxonomic purpose in *Artemisia* species were revealed by Rabie *et al.* (2006), Noorbaksh *et al.* (2008) and Saedi *et al.* (2009). The anatomical changes and frequencies of stomata in leaves of few *Artemisia* species were revealed by Nautiyal and Purohit (1980) and Hayat *et al.* (2010). This study confirmed four different stomata types viz; Anisocytic, diacytic, anomocytic and anomotetracytic (Fig. 4). These findings regarding the types of stomata are in agreement with the previous findings (Rabie *et al.*, 2006; Noorbaksh *et al.*, 2008; Saedi *et al.*, 2009; Hayat *et al.*, 2010).

Table 5: Quantitative attributes of non-glandular foliar trichomes in *Artemisia* species

<table>
<thead>
<tr>
<th>Artemisia spp.</th>
<th>Aduncate</th>
<th>Unicellular Clavate</th>
<th>Conical trichome</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Presence/Absence</td>
<td>Height x width (μm)</td>
<td>Presence/Absence</td>
</tr>
<tr>
<td>A. austriaca</td>
<td>Absent</td>
<td>---</td>
<td>Absent</td>
</tr>
<tr>
<td>A. argyi</td>
<td>Absent</td>
<td>---</td>
<td>Absent</td>
</tr>
<tr>
<td>A. dubia</td>
<td>Present</td>
<td>---</td>
<td>Absent</td>
</tr>
<tr>
<td>A. herba alba</td>
<td>Absent</td>
<td>---</td>
<td>Absent</td>
</tr>
<tr>
<td>A. indica</td>
<td>Present</td>
<td>189.55-199.30x7.87-10.90</td>
<td>Absent</td>
</tr>
<tr>
<td>A. chinensis</td>
<td>Absent</td>
<td>---</td>
<td>Absent</td>
</tr>
<tr>
<td>A. tournefortiana</td>
<td>Absent</td>
<td>---</td>
<td>Absent</td>
</tr>
<tr>
<td>A. verlotiorum</td>
<td>Present</td>
<td>130.46-127.30x9.94-12.64</td>
<td>Absent</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Artemisia spp.</th>
<th>Aduncate</th>
<th>Presence/Absence</th>
<th>Height x width (μm)</th>
<th>Stinging hair trichome</th>
<th>Unicellular filiform</th>
<th>Unicellular tector</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Presence/Absence</td>
<td>Height x width (μm)</td>
<td>Presence/Absence</td>
<td>Height x width (μm)</td>
<td>Presence/Absence</td>
<td>Height x width (μm)</td>
</tr>
<tr>
<td>A. austriaca</td>
<td>Absent</td>
<td>---</td>
<td>Absent</td>
<td>---</td>
<td>Absent</td>
<td>---</td>
</tr>
<tr>
<td>A. argyi</td>
<td>Present</td>
<td>133.89-135.30x7.64-12.09</td>
<td>Absent</td>
<td>---</td>
<td>Absent</td>
<td>---</td>
</tr>
<tr>
<td>A. herba alba</td>
<td>Absent</td>
<td>---</td>
<td>Absent</td>
<td>---</td>
<td>Absent</td>
<td>---</td>
</tr>
<tr>
<td>A. indica</td>
<td>Absent</td>
<td>---</td>
<td>Absent</td>
<td>---</td>
<td>Absent</td>
<td>---</td>
</tr>
<tr>
<td>A. chinensis</td>
<td>Absent</td>
<td>---</td>
<td>Absent</td>
<td>---</td>
<td>Absent</td>
<td>---</td>
</tr>
<tr>
<td>A. tournefortiana</td>
<td>Absent</td>
<td>---</td>
<td>Absent</td>
<td>---</td>
<td>Absent</td>
<td>---</td>
</tr>
<tr>
<td>A. verlotiorum</td>
<td>Absent</td>
<td>---</td>
<td>Absent</td>
<td>---</td>
<td>Absent</td>
<td>---</td>
</tr>
</tbody>
</table>

Fig. 5: Scanning electron micrographs showing glandular trichomes of different *Artemisia* species: (A) *A. annua*, (B) *A. argyi*, (C) *A. chamaemelifolia*, (D) *A. tournefortiana*, (E) *A. verlotiorum*, (F) *A. austriaca*, (G) *A. montana* (H) *A. chinensis*, (I) *A. gmelinii*, (J) *A. vulgaris*. (Scale bar = 20, 200 μm)

With the help of microscopic techniques, Bano *et al.* (2015) revealed polygonal shaped epidermal cells with straight pattern walls in *A. persica*. Wang *et al.* (2016) recently studied drought adaptive characteristics of leaf epidermal cells of different *Artemisia* species. Ivashchenko and Ivanenko (2017) studied the foliar epidermal cells of *A. abrotanum* and found thick walled epidermal cells. In the present study, three major types of epidermal cells among *Artemisia* species were observed: one with irregular shape...
In this study, majority of *Artemisia* species showed capitate type trichomes (Fig. 5). Previous studies by Kelsey (1984), Ascensao and Pais (1987) Lodari et al. (1989) Ferreira and Janick (1995) and Hayat et al. (2009a, b) also confirmed that the capitate glandular trichomes are most common in species of *Artemisia* genus.

Moreover, huge variations have been observed in capitate type trichomes in the studied *Artemisia* species. For example, the capitate type of trichomes in *A. argyi, A. dubia, A. verlotiorum, A. tournefortiana* and *A. vulgaris* were present in both upper and lower surface of the leaves. These types of trichomes in *Artemisia* were also reported in the previous studies of Hayat et al. (2009a, b) confirming their ellipsoidal shape with the division of two halves. The capitate trichomes of few species showed ellipsoid shape with two halves and few species did not show the two halves division. In few species, the shape of trichome was same and division of halves was not clear.

The capitate types of trichomes observed in this study were different from those reported previously in *A. tridentate* (Slone and Kelsey, 1985), *A. annua* (Ferreira and Janick, 1995), *A. ludoviciana* (Smith and Kreitner, 1983), *A. compestris* (Ascensao and Pais, 1987), *A. nova* (Kelsey, 1984) and *A. princeps* (Lodari et al., 1989). In addition to the capitate trichomes, we also noticed some other types of trichomes which may be important from the taxonomic point of view. Among those trichomes, pluricellular trichomes of *A. annua* and *A. chamaemelifolia* were observed. Peltate trichomes that look like a ball with multicellular structures were important feature of *austriaca, A. montana, A. indica* and *A. chinensis*. Conical type trichomes with a circular base tapering towards the apex were found in *A. chinensis*. Stinging hair sharp non-glandular trichomes with a sting like apex were present in in *A. argyi*. Aduncate with long curved or hook like apex trichomes were observed in *A. verlotiorum, A. indica* and *A. dubia* (Fig. 6 and 7).

Unicellular calavate trichomes, short and narrow from the base and thicker at the apex were found in *A. tournefortiana*. Unicellular filiform trichomes with sharper apex were observed in *A. austriaca*. Similarly, the unicellular tector non-glandular trichomes in clusters form were the characteristic feature of *A. herba alba*. The majority of non-glandular trichomes observed in this study were not previously been reported in *Artemisia* species except for the aduncate and unicellular tector non-glandular trichomes. However, we found aduncate curly trichomes in *A. indica* and *A. dubia* whereas other studies showed these types of trichomes in *A. roxburgiana* (Hayat et al., 2009b). Moreover, this study found unicellular tector trichomes in *A. herba alba* whereas, other studies disclosed these types of trichomes in *A. dubia* (Hayat et al., 2009a). It clearly indicates that the aduncate curly and unicellular tector trichomes are also common in the foliar surface of different *Artemisia* species.
Conclusion

This study authenticates foliar epidermal anatomical characteristics as valuable traits in resolving taxonomic issues and may essentially enlighten taxonomist’s perceptions in the delimitation of Artemisia species. Nevertheless, integrating this type of data with molecular phylogenetic approaches and investigations of foliar micromorphological attributes in other closely associated Artemisia species would be more convenient to resolve taxonomic issues within the genus Artemisia.

Acknowledgements

This manuscript is the part of doctoral dissertation of Adil Hussain. The authors thank Higher Education Commission and the Agricultural Experiment Station of the University of California, Davis for providing financial assistance to complete this work. We are thankful to International Islamic University Islamabad Pakistan and National University of Science and Technology Islamabad Pakistan for providing research facilities. The authors acknowledge with greatest indebtedness the vital role played by staff of Department of Plant Sciences, University of California Davis CA USA, for the provision of all required equipment and necessary materials to complete this research work. Special thanks to Ms. Patricia (Pat) E. Kysar, CEMT, Staff Research Associate SRAIII University of California Davis, USA, for her appreciated technical support throughout the scanning electron microscopy.

References

Dickison, W.C., 2000. Integrative Plant Anatomy. Academic Press San Diego, California, USA

Received 10 October 2018; Accepted 26 October 2018