Ochrobactrum pituitosum Causes Kernel Rot and Premature Shedding of Fresh Walnut Fruits

Zhongdong Yu\(^1\), Yunjing Sun\(^2\), Shaobing Peng\(^3\), Tao Li\(^4\) and Phonepaserd Phanpadith\(^5\)

\(^1\)College of Forestry, Northwest Agriculture & Forestry University, Yangling 712100 China
\(^2\)Sichuan Provence Forest Pest Control and Quarantine Station, Chengdu, 610082 China
\(^3\)For correspondence: yuzhongdong001@nwsuaf.edu.cn; yu-10083@163.com

Abstract

A new suspected bacterium caused premature shedding of walnut fruit has been observed in commercial orchards in Shaanxi Province, China. Typical symptoms include kernel rot, with the kernel becoming black and liquid at the end, and eventually, the infected fruit falls; however, the exterior of the fruit appears to be healthy, and the fruit exocarp, sarcocarp and endocarp tissues develop normally. Based on the morphological observation, a Biolog GenIII plate, biochemical reactions, phylogenic analysis of 16S rDNA and gyrB gene sequences, as well as the fulfilling Koch's postulates on fruits, tobacco leaves and a potato assay, the causal agent was determined as **Ochrobactrum pituitosum**. This is the first report of *O. pituitosum* as a pathogen of walnut in the world, causing fresh walnut premature shedding. © 2019 Friends Science Publishers

Keywords: Walnut kernel rot disease; *Ochrobactrum pituitosum*; Biolog identification; Phylogenic identification

Introduction

Walnut (*Juglans regia* L.), originated in Central Asia, and is a deciduous tree belonging to the genus *Juglans* in the *Juglandaceae*. It plays an important role as a “woody oil plant” and has edible, pharmaceutical and timber value (Akhbari et al., 2012; Ercisli et al., 2012; Pollegioni et al., 2015). China produces 1,655,000 t of walnut fruit annually and ranks first in the world for yield (Khadivi-Khub and Ebrahimi, 2015). The walnut-producing industry in China has developed rapidly, and China is also ranked first in the area planted and fresh walnut produced in the world (Khadivi-Khub et al., 2015). Many tree species of *Juglandaceae* in the world have been imported in China and bred for walnut production, including pecan, another genus species, *Carya illinoiensis* from north American. Varieties of *J. regia* called paper walnut with thin wall, early ripening and high yield, were planted in most walnut orchards in China, however, they suffered the heaviest loss from insects and diseases throughout the year.

In recent years, a new bacterial disease has been found in commercial orchard in the Shaanxi Province, China. The young walnut fruits grow slowly with normal color but falls down easily in wind and rain. The kernels of the fallen fruits display a cheese-like rot and are full of liquid, whereas the tissues of the exocarp, sarcocarp and endocarp have developed normally in early stage. This disease is generally found in 10-30 d bearing fruits and can lead to a fruit dropping rate as high as 40% in the field, which seriously affects the yield of the commercial walnut. To clarify the pathogen responsible for kernel rot, methods involving liquid tissue isolation, artificial cultivation, purification of the pathogen, pathogenicity tests, cell wall staining, Biolog microarrays, biochemical analysis and molecular identification were employed for identification in this study and were reported herein.

Materials and Methods

Materials

Walnut fruits of *Juglans regia* were collected from Yangling District (34°16'N, 108°4'E), Qianxian County (34°54'N, 108°25'E) and Shanyang County (33°55'N, 109°91'E) in Shaanxi Province, where kernel rot has frequently occurred. The putative fruits on the trees and the fallen fruits on the ground were both packed in sealed bags, conveyed to the laboratory in an icebox, and then pathogens were isolated and cultured artificially.

Lysogeny broth (LB) agar medium of pH 7.0, with 10 g tryptone, 5 g yeast extract, 10 g NaCl, and 15 g agar per 1000 mL volume, was applied for isolation and purification. Liquid LB medium without agar was applied for fermentation of the purified colony. HL medium, with 2 g tryptone, 5 g NaCl, 0.02 g K2HPO4, 3 mL 1% methyl bromide blue water, 3 g agar, and a total volume of 1000 mL, with a final pH of 7.1, was used for physiological and chemical identification.

To cite this paper: Yu, Z. Y. Sui, S. Peng, T. Li and P. Phanpadith, 201x. *Ochrobactrum pituitosum* causes kernel rot and premature shedding of fresh walnut fruits. *Int. J. Agric. Biol.* 00: 000–000
Isolation of the Putative Pathogen

The diseased fruits were surface sterilized using 70% ethanol for 2 min, rinsed 3 times with sterile distilled water (SDW), and dried on sterilized filter paper in a laminar flow cabinet. The fruits were then cut into two halves with a knife, and an inoculating loop was then immersed into the rot kernel and scaled lines on the surface of the LB medium. When colonies developed in the medium at 28°C for 72 h, three single colonies were picked and transferred to a new LB medium Petri dish for mono-colonization, respectively. The single colony was cultured in the LB liquid medium at 28°C and 180 rpm for 48 h, and then an equal volume of glycerinum at a 40% concentration was dropped into the LB liquid for extended storage at 20°C below zero.

Pathogenicity Tests

The putative causing isolates were inoculated into the tobacco vivo seedlings by slight injection 1×10^6 cfu/mL LB suspending into the abaxial leaf, respectively. A potato assay was also employed for checking secondary pathogen by needle puncturing 1 mL LB suspending with 1×10^6 cfu/mL in each inoculation hole. Each group with 10 repeats and a same repeat of control by inoculation SDW instead of causing isolate suspending under the room temperature of 25-28°C. The causing isolate with a typical hypersensitive response (HR) or a tissues broken was believed a potential pathogen and forwarded to inoculate walnut fruits. Healthy fruits about 12 days old and with a diameter of 3-4 cm were selected for artificial inoculation in the field by injecting 0.1 mL bacteria LB suspended with 10^7 cfu/mL into the endocarp from the pistillar point of the walnut after surface sterilization. Each treatment was repeated 10 times, and the control was injected with SDW and 10 repetitions. Fruits for the test were enclosed within a translucent plastic bag to prevent them from contacting with rain and exotic pathogens. The symptoms of the tested fruits were checked every day until the fruit fall, and the pathogen was re-isolated from the fallen fruit according to method above.

Pathogen Morphology and Biochemical Analyses

The putative isolate identified in the method above was further observed under a scanning electron microscope (SEM) and grown in different media to check aerobic and anaerobic requirements, catalase activities, starch dissolution, indole production, H2S production, lipolysis digestion, gelatin decomposition and Gram staining, according to the methods of Schaad et al. (2001). Samples were prepared and coated with gold using a carbon evaporation coater (E-1045, HITACHI, Japan) as described by Zhang et al. (2016), and then observed and photographed with a SEM (S-4800, HITACHI, Japan) in the electron microscopy facility at 5 KV of accelerating voltage.

The OmniLog® system, Gen III MicroPlate and the Biolog database from the Biolog Company were employed for identification of the putative bacteria. The putative isolate was cultured on BUG (growth medium for agricultural bacteria, Biolog #1506) agar plats at 28°C for 24 h. Then, 150 µL of the bacterial suspension (OD_260 = 2.5) was added to each well of a MicroPlate and incubated at 28°C for 24 h. The MicroPlate was read using a MicroStation 2 Reader, and the results were compared with analyzed using the database (Wragg et al., 2014). All Biolog procedures were completed at the Qingdao Technology standard R & D center, China.

Molecular Identification of the Putative Bacteria

For DNA extraction, the putative bacterium was cultivated in LB broth at 28°C and at 160 rpm for 48 h before being centrifuged at 8000 rpm for 1 min. The genomic DNA of the bacteria was extracted using the Bacterial Genomic DNA Rapid Extraction Kit (Sangon Biotech Ltd., #B518225-0050) according to the manual, and the dissolved DNA was stored at -20°C for future using.

Two genes were employed for molecular identification in this study using universal primers. Pair of primers 27F/1492R (27F: 5'-AGAGTTTGATCCTGTTCGAGCTC-3'; 1492R: 5'-GTTACCTTGTTACGACTT-3') (Maestre et al., 2010) was used for amplifying the 16S rDNA of the putative bacteria. The PCR reaction consisted of an initial denaturation at 94°C for 5 min and 35 cycles of 94°C for 30 s, 58°C for 1 min, and 72°C for 2 min, followed by a final extension at 72°C for 10 min. Primer pair 1F/1R (1F: 5'-GAAGTCATCATGACCCTGCTGCAAGCNGGNNGGA ART TYGA-3'; R1: 5'-GCCTCCTTCTGCAAGCNGGNNGGA ART TYGA-3') (Kakinuma et al., 2003) was used for amplifying the gyrB gene. The PCR reaction consisted of an initial denaturation at 94°C for 5 min and 30 cycles of 94°C for 1 min, 65°C for 30 s, and 72°C for 2 min, followed by a final extension at 72°C for 10 min. Both primer pairs were synthesized by the Sangon Biotech (Shanghai) Company Limited, China. Each amplification was performed in a total volume of 25 µL containing 12.5 µL 2 X Es Taq MasterMix (Beijing ComWin Biotech Co., Ltd., China), 1 µL each of forward and reverse primer (10 µM), 1 µL DNA (80 ng/µL) and 9.5 µL of sterilized distilled water. Three microliters of each PCR product were checked by electrophoresis on a 1% agarose gel.

DNA fragments were purified and sequenced by the Aoke Biotech (Shanghai) Company, China. After revising and joining, the sequence was used as the query in a BLAST search performed via the NCBI (http://www.ncbi.nlm.nih.gov/), and the homologous sequences of type materials with high coverage were downloaded for constructing phylogeny trees. All sequences were aligned first with Clustal X 1.81 (Thompson et al., 1997) and then adjusted based on the algorithm of Nei and Kumar (2000). All positions containing gaps and missing data were completely eliminated from the dataset. Data were analyzed by neighbor-joining (NJ) using the close-neighbor-
interchange algorithm (Nei and Kumar, 2000) as implemented in MEGA 5.0 (Tamura et al., 2007). Support for the branches based on parsimony criteria was estimated by bootstrap analysis using 1000 replicates.

Results

Symptom Description and Pathogenesis Test

Kernel rot occurs during April and May every year. The fruit appears healthy but easily falls. The rot kernel becomes cheese-like initially, and the endocarp gradually fills with liquid. Finally, the whole endocarp becomes dark and the young fruit falls after bearing approximately 10 days. A dominant colony isolated from the endocarp liquid in this study was named XF and preserved in China Forestry Culture Collection (XF; accession no. cfc 15139). Isolate XF showed a typical hypersensitive response (HR) in vivo tobacco leaves (Fig. 1), but without tissues broken in the potato assay inoculations (Fig. 2). It can also cause young bearing fruit to fall 7 days after inoculation by artificial injection inside the endocarp (Fig. 3). All inoculated young bearing fruits fell within 20 dpi. However, no fruits fell in the control group until the field test ended. The symptoms of inoculated fruits developed similarly as the field-diseased fruit, and re-isolation from inoculated fruits resulted in the same pathogenic bacteria, which caused kernel rot isolated from the field samples. This finding proved Koch's postulates that the putative isolate XF is a pathogen of walnut kernel rot rather than a secondary agent.

Morphologic, Physiologic and Chemical Identification of the Pathogenic Isolate

Isolate XF grows well on the LB medium; its colony has a round shape and is embossed, sticky, white and semitransparent with a surface that is wet, smooth and glossy, and with a regular boundary. Under SEM, the bacteria are rod shaped with sizes of (0.4 ~ 0.6) μm × (0.6 ~ 1.6) μm, holomastigotes and binary fission (Fig. 4). Under the microscope, the isolate XF bacilliform was considered Gram negative. The XF colony is aerobic, with good catalase activities, indole production, and lipolysis activities. However, the isolate XF cannot dissolve starch and gelatin, and no H₂S was produced during culture (Table 1).

A microarray with a 96-well GEN test revealed that isolate XF has high similarity with *Ochrobactrum intermedium* after 24 h of incubation reaction, with a similarity coefficient of 0.617 and a distance of 5.529 between XF and *O. intermedium*.

Phylogenic Analysis of the Pathogenic Isolate

Polymerase chain reaction (PCR) of the 16S small subunit of ribosomal DNA produced a fragment of approximately 1.5 kb DNA (GenBank Accession No. MF140273). After purification, sequencing and verification, this 1.5 kb DNA was used as the query sequence in a BLAST search performed via NCBI (https://www.ncbi.nlm.nih.gov/) and showed a 99% sequence identity and 100% coverage with sequences of the genus *Ochrobactrum*, most of which were reportedly isolated from the *Zea mays* root system (Niu et al., 2016). Sequences with high identity with XF were selected for constructing a neighbor-joining phylogeny tree (Fig. 5). The isolate XF was grouped within the clad of most *Ochrobactrum pituitosum* and differentiated from the other species of the genus *Ochrobactrum* and another important pathogen, *Xanthomonas campestris*, which causes walnut black spot disease in the worldwide (Pollegioni et al., 2015).

<table>
<thead>
<tr>
<th>Item</th>
<th>Result</th>
</tr>
</thead>
<tbody>
<tr>
<td>gram stain</td>
<td>-</td>
</tr>
<tr>
<td>aerobic or anaerobic</td>
<td>aerobic strictly</td>
</tr>
<tr>
<td>catalase test</td>
<td>+</td>
</tr>
<tr>
<td>starch</td>
<td>-</td>
</tr>
<tr>
<td>indole production</td>
<td>+</td>
</tr>
<tr>
<td>H₂S production</td>
<td>-</td>
</tr>
<tr>
<td>lipolysis</td>
<td>+</td>
</tr>
<tr>
<td>gelatin liquefaction</td>
<td>-</td>
</tr>
</tbody>
</table>

“+”, Positive reaction. “-”, Negative reaction

Table 1: Main bacteriological characteristics of isolate XF

Fig. 1: A hypersensitive response (HR) on tobacco leaves

In the tobacco vivo assay, the vein left inoculated isolate XF showed a hypersensitive response after 24 h (purple circles), the vein right without HR are the controls inoculated with SDW (red circles)
Another gene of gyrB was amplified with a product of 1.2 kb DNA fragment (GenBank Accession No. MF140274). After sequencing and BLAST searching, this sequence of XF also showed high identity with sequences of the genus Ochrobactrum. Among them, XF showed sequence identities of 86%, 86%, and 88% with O. putitiosum (CP018780.1), Ochrobactrum pseudogrignonense (FM863816.1), and Ochrobactrum grignonense (FM863815.1), respectively. Type strains of sequences with high similarity were then selected for construction of a phylogeny tree, in which XF was also grouped within the clad of a type strain O. pituitiosum but failed to differentiate from the other type strain O. grignonense (Fig. 6).

Discussion

O. putitiosum belongs to class α-proteobacteria, order Rhizobiales, family Brucellaceae, and genus Ochrobactrum. There are 17 effective named species in total (Lebuhn et al., 2006; Scholz et al., 2008; Huber et al.,...
2010), and the model species, *Ochrobactrum anthropi*, is an opportunistic pathogen of human beings (Bezza et al., 2016). In recent years, the number of human infections caused by opportunistic pathogens belonging to the *Ochrobactrum* genus has increased dramatically (Chain et al., 2011). *Ochrobactrum* contains root-associated strains that can be involved in bivalent interactions with both plant and human hosts (Berg et al., 2005; Woo et al., 2011; Aguirre-Garrido et al., 2012; Gohil et al., 2016). *O. intermedium* CN3 produces a lipopeptidal bio-surfactant that showed up to 70% degradation of the most hydrophobic components of petroleum sludge, presenting potential application in petroleum sludge treatment and environmental remediation (Bezza et al., 2016). *O. intermedium* strain 2745-2 can degrade crude oil and was isolated from the formation water of the Changle oilfield in Shandong, China (Chai et al., 2015). Species of *Ochrobactrum* have displayed the ability to digest hydrocarbons, proteins and fats. Physiological and biochemical tests showed that isolate XF is an aerobic bacterium that can decompose kernel fats and transfer tyrosine protein into indoles, a form of auxin that probably accelerates the process of young bearing fruits falling from the trees.

Gene gyrB, a subunit of the gyrase, is a typical exon DNA, gyrB involved in most bacteria genomes with different substitution ratios at a certain protein and a certain protein locus, and few horizontal transfers occur, and gyrB is widely used for cryptic species identification, new species identification and diversity studies of bacterial communities (Kumar et al., 2006). 16S rDNA, a relatively high conservative intermediate repeat gene, is universally used for bacteria identification; however, the small fragment of its PCR produced and the limited information involved made it difficult to differentiate the cryptic species (Kakinuma et al., 2003; Peat et al., 2010). From this point of view, the gyrB gene showed more advantages than 16S rDNA for distinguishing cryptic phylogenetic species. However, the gyrB in this study showed a high diversity in *Ochrobactrum* bacteria, and revealed that isolate XF only 86% homogenes with *O. puititosum*, and as there are only 17 effective named species found in the genus *Ochrobactrum*, both gyrB and 16S rDNA can provide limited phylogenetic information of this cryptic species.

Biolog GEN III microarray plates are used for rapid bacterial identification, but the identification relies heavily on the data available. Species not in the data will not be identified in practice, and cryptic species cannot be identified because of low similarity. Currently, there are 1327 species stored in the GEN III data, among which Gram-negative and aerobic bacteria account for 568 species (Wragg et al., 2014). In general, the Biolog system displays a limited ability for species differentiation, therefore, we obtained different species sensu identification results from those of Biolog and molecular phylogeny tree. However, both of these methods showed isolate XF to be in the same genus *Ochrobactrum*.

Conclusion

O. puititosum, as a novel pathogen of walnut, caused kernel rot and fruits premature shedding. It is a Gram- bacteria with flagellum peritrichous, indole produced, and parasite instead of causal pathogen. Combined phylogenetic analysis of 28srDNA and gyrB genes and Biolog GEN III microarray method resolve *O. puititosum* as a novel pathogen, different from another ever reported important walnut pathogen, *X. campestris*, which causes walnut black spot disease.

Acknowledgments

This study was supported by the national key research projects 2017YFD060103-4-2 in China, Shaanxi Agricultural science and Technology Extension Project (2015NY124).

References

(Received 02 March 2019; Accepted 27 March 2019)