An Epidemiologic Study of Retained Fetal Membrane in Dairy Cows on Two Dairy Herds in China

Shi-xia Zhang¹, Ji-lang Tang³, Bang-hui Zhou and Guo-jun Jiang*
*College of Veterinary Medicine, Agricultural University of Hebei, Baoding, P.R. China
¹These authors have contributed equally to this work
²For correspondence: jgj857@163.com; abs@academicconf.com

Abstract

In this research, the influencing factors of retained fetal membrane on dairy cattle on two dairy herds (herd No. 1 and No. 2) from Hebei Province in China were evaluated. The distribution of retained placenta was compared between the two dairy herds by means of Chi-square test and then analyzed by means of logistic regression of linear models. The following factors in the first lactation were not significant (P>0.05) or not associated with retained fetal membrane: stillbirth, twins, calving difficulty, previous abortion, milk fever. Twins were not significantly associated to retained fetal membrane (P>0.05) in the second lactation. Stillbirth, twins, calving difficulty, previous abortion and milk fever (P<0.01) in second lactation were significantly associated to retained fetal membrane. Univariate analysis showed that there was a significant correlation between risk factors for retained placenta. The variables for stillbirth and milk fever were associated with retained fetal membrane. The combined effect of calving season and previous abortion for retained fetal membrane was examined and the results displayed that cattle calved during hot months and had a history of previous abortion were 22 times higher possibility to experience retained placenta, by comparison of cows that calved in non-hot months and without a history of previous abortion. Therefore, Stillbirth, calving season, previous abortion and milk fever are the risk factors associated with retained fetal membrane. © 2019 Friends Science Publishers

Keywords: Dairy cattle; Epidemiology; Retained placenta; Risk factors

Introduction

6-8 h after delivery, almost 77% of the cattle excreted membranes (Boro et al., 2015). Retention of fetal membranes (RFM) is a condition in which membranes are not excreted within 12-24 h after delivery (Fourichon et al., 2000). RFM is a major key factor for metritis and clinical endometritis (Maizon et al., 2004; Gautam et al., 2009), which is related to tissue injury, delayed uterine recovery, endometrial dysfunction and ovarian cycle disorder (Sheldon et al., 2002; Herath et al., 2009). 25% of RFM-bearing animals will suffer from endometrial inflammation (Opsomer et al., 2000). The main reasons for reduced fertility are slower uterine involution and ovarian cycle recovery (Driillich et al., 2003; Maizon et al., 2004). The incidence of RFM in dairy cows is 5-10% with an average prevalence of 8.6% (Kelton et al., 1998; LeBlanc, 2008). Collagenases play an important part in the elimination of fetal membrane, by destroying peptide bonds in collagen (Sheldon et al., 2002). The economic losses due to RFM are serious and the causes of RFM are complicate. The purpose of the present study is to evaluate the critical factors related to the pathological condition of retained fetal membranes on two commercial cow herds in China.

Material and Methods

Two dairy herds (herd No. 1 and No. 2) from Hebei Province in China were included in the present study. The annual average temperature of hot months in Herd No. 1 was 27.2°C in 2015. The herds’ cattle were feed in the light of the farm protocol developed by the boss and veterinarians of herd No.1. The annual average temperature of hot months in Herd No. 2 was 26.2°C in 2015. Cattle were feed on the basis of the scheme developed by the International Cooperation on Harmonization of Technical Requirements for Registration of Veterinary Medicinal Products.

The same reproductive management protocols were used in Herd No. 1 and No. 2 for this study. Cows calved from January 1, 2015 to December 31, 2015 and within 30 d after their calving in herd No. 1 (n= 2184) and in herd No. 2 (n= 1649) were considered for inclusion in the study. In both study herds, diets were formulated on the basis of TMR (total mixed ration).

The temperature of each cow was taken in the first 10 d postpartum. Cows with rectal temperatures greater than 39.5°C are considered to have fever. Feverish cattle or cows that appeared to be sick but have no fever are checked to preclude mastitis, ketosis, metritis, and displaced abomasum.
Milk fever is mainly the disease of calving cows before birth. Typically, cows get excited at an early stage, as well as tremors in muscles of the head and limbs, after that the cows stumble and kneel down slowly and lie flat on their side, eventually the cows would shock and death. Acute puerperal metritis was investigated when the cattle had stench, reddish brown, watery vaginal discharge and rectal temperature ≥ 39.5°C within the first 10 DIM. Cows were then treated according to the established farm agreements. Cows with abnormal delivery (with or without RFM dystocia) should be carefully monitored because they are more susceptible to metritis, fever and hypocalcemia.

The present study was designed as a case-control study. Cows diagnosed and treated for RFM during the first 30 d postpartum were selected as case cows. Cows non-affected with RFM during the first 30 d post-partum were classified as control cows.

Farm records were used to collect the following data: herd identification, cow identification number, lactation number, previous history of abortion, calving date, calving difficulty (yes, no), twins (yes, no), diagnosis of milk fever (yes, no; date), diagnosis of metritis (yes, no; date) and diagnosis of clinical mastitis (yes, no; date).

The incidence risk for RFM was calculated for the two farms. The distribution of RFM was compared between farms by means of Chi-square test of association and then analyzed by means of logistic regression of linear models. The risk ratio (RR) was used an epidemiologic measure of association between an explanatory variable (i.e., Retention fetal membranes) and the outcome of interest (previous abortion) in the present study. Descriptive statistics of qualitative and quantitative variables were calculated, before odds ratios (OR) were estimated using logistic regression. The risk factors tested were: herd identification, previous abortion, calving difficulty, calving season, stillbirth, twins and milk fever. The model-building strategy involved four steps. In the first step, all variables were screened using univariable conditional logistic regression with the data grouped by herd. When the subsequent univariable analysis of investigated exposure factors related to retained fetal membrane in first lactation cattle that calved in two commercial dairy herds had been finished and then their second or later lactations dairy cows were analyzed. The third step of analysis is the correlation matrix of investigated exposure factors associated with retained fetal membrane in their second or later lactations dairy cows. The fourth step was multivariable analysis with interaction of investigated exposure factors associated with retained fetal membrane in their second or later lactations dairy cows. All analyses were carried out using Analytical Software Statistics 10.0.

Results

Incidence and Impact of RFM of Cows in Herd No. 1 and Herd No. 2

379 of 3833 cows (9.89%) were diagnosed with RFM. The incidence of RFM at herd 1 and herd 2 were 11.26% and 8.07%, respectively. The odds of RFM were 0.69 times lower in herd 2 compared to herd 1; the odds of RFM were 0.59 times lower in lactation number 2+ compared to lactation number 1; the odds of RFM were 0.45 times lower in lactation number 2+ compared to lactation number 1 in herd 1 (Table 1, 2 and 3).

Incidence and Impact of RFM of Cows in Their First Lactation

In univariate analysis, the variables of calving season and herd had a p value of ≤ 0.01 in their first lactation. Stillbirth, twins and calving difficulties had a p value of ≤ 0.20 and were further investigated in the multivariable analysis of RFM. Previous abortion, stillbirth, calving difficulty and milk fever had a p value of ≤ 0.80 and were further investigated in the multivariable analysis of RFM (Table 4).

Incidence and Impact of RFM of Cows in Their Second or Later Lactations

In univariate analysis, the variables of calving season, previous abortion, stillbirth, calving difficulty and milk fever had a p value of ≤ 0.20 and were further investigated in the multivariable analysis of RFM (Table 5, 6, 7 and 8). We examined the combined effect of calving season and previous abortion for RFM, and the results demonstrated that cows that calved during hot months and had a history of previous abortion were 22 times higher possibility to experience RFM, by comparison of cows that calved in non-hot months and without a history of previous abortion (Adjusted OR=22.63; 95% CI = 6.30, 81.36) (Table 7 and 8).

Discussion

In this study, the odds of RFM were 0.69 times lower in herd 2 compared to herd 1. The first reason may be the lower level management induces the higher RFM. The bad management can increase the produce of abortion, stillbirth, milk fever, calving difficult and other diseases in parturition which were the critical element related to RFM (Bourne et al., 2008; Kankofer et al., 2010; Pontes et al., 2015). The second reason may be the higher temperature in the farm which was located in more hot area. It is showed that the incidence of RFM during hot season was higher in hybrid and Friesian cows (Hossein-Zadeh and Ardalan, 2011). Kumari et al. (2015) also observed that during summer the incidence of RFM increased markedly by 1.75 times in Murrah buffalos.

In the univariable analysis, the variables for calving season and herd had a p value of ≤ 0.01 in their first lactation, the odds of RFM being 0.43 times lower in herd 2 compared to herd 1. The main reason may be relative to the bad management of herd 1, the unskilled workers and veterinarians would increase the incidence of RFM induced by the increasing stress and decrease the immunity of dairy cows, especially for the first lactation cows.
In the second or later lactations, the odds of RFM were 0.82 times lower in herd 2 compared to herd 1. Risk factors like difficult calving, abortion, and stillbirth can increase the incidence of RFM in the two herds. Cows with abortion experience are 7.11 times more likely to have RFM than cows without abortion experience. Cows with calving difficulty had a 2.79 times higher incidence of RFM than cows without calving difficulty. Abortion, stillbirth, and difficult calving may cause circulatory disorders that impair normal fetal detachment, leading to RFM. Hossein-Zadeh and Ardalan (2011) also discovered that calving problems including difficult calving and stillbirths were related to RFM, difficult calving might be due to the weakness of uterine contraction, delayed uterine involution and uterine mechanical damage. Our results are similar to other studies reporting increase of RFM incidence in cows with previous abortion, stillbirth and dystocia (Swai et al., 2005).

In their second or later lactations, cows with stillbirth had a 2.79 times higher incidence of RFM than cows without stillbirth. During late cow pregnancy, several hormones are involved in maintaining and developing a successful pregnancy and parturition of healthy calves. The stillbirth may cause hormonal imbalances of pregnant female, which can damage normal membrane detachment and lead to RFM.
Kornmatitsuk et al. (2004) found that the levels of both oestrone sulphate and PAG were low during late pregnancy and at the time of parturition cases of stillbirth and low calf viability.

Various risk factors, including preterm birth or induced labor, dystocia, hormonal imbalances, and immunosuppression, can disrupt normal production processes and cause placenta retention (Beagley et al., 2010). In their second or later lactations of the present study, cows with MF had a 3.38 times higher incidence of RFM than cows without MF. Milk fever was characterized by hypocalcemia during parturition because of a sudden increase in calcium demand and an inevitable delay in calcium metabolism. Many literature data indicated that comparing with cows without RFM, cows with RFM had a significant decrease in plasma calcium concentration immediately after calving (Risco et al., 1994; Melendez et al., 2004). Calcium activates many enzymes through phosphorylases and plays an important role at the cellular level (Brogle et al., 1999). Hypocalcemia may affect the mechanism of detachment of cotyledon villi participates in fetal membrane release process. Collagenase activity of cotyledon vili participates in fetal membrane release process. Collagen enzyme activity of healthy cow increased and that of RFM cow decreased. Collagenase is a calcium-dependent enzyme (Brogle et al., 1999).

The analysis revealed that cows that calved during hot months and had a history of previous abortion were 22 times higher possibility to experience retained placenta, by comparison of cows that calved in non-hot months and without a history of previous abortion. In this study, cows with previous abortion had 5.89 times higher incidence of RFM than cows without previous abortion and not in hot months in their second or later lactations. The adjusted odds of RFM were 2.02 times higher in cows calving during hot months compared to cows without previous abortion and not calving during hot months. Cows with previous abortion and calving in hot months had a 22.63 higher incidence of RFM than cows without previous abortion and not calving in hot months. The first reason may be more serious heat stress to the cows calving in hot seasons than cows in non-hot seasons. The effects of heat stress and its adverse consequences on health, milk production, and overall productivity have been widely investigated (Bernabucci et al., 2010). Heat stress reduces fertility in lactating cows (Lopez-Gatius, 2003). Early embryonic development is sensitive to thermal stress (Ealy et al., 1993). The second reason may be increase in temperature of climate, affecting the normal physiological metabolism of dairy cows. Higher incidence of RFM during hot months has already been reported in crossbred and Friesian cows (Gröhn and Rajala-Schultz, 2000; Hossein-Zadeh and Ardalan, 2011). Gröhn and Rajala-Schultz (2000) observed that summer season markedly increased the incidence of RFM by 1.75 times in Murrah buffalos.

Conclusion

Stillbirth, calving season, previous abortion and milk fever are the risk factors associated with retained fetal membrane in dairy cows on two dairy herds (herd No. 1 and No. 2) from Hebei Province in China.

Acknowledgments

The authors thank all the dairy farmers and their veterinary practitioners for participation; thank all faculty of College of Veterinary Medicine University of Florida. This study was supported by Program of Study Abroad for Young Teachers by Agricultural University of Hebei.

References

Epidemiologic Study of Retained Fetal Membrane in Dairy Cows / Int. J. Agric. Biol., Vol. 00, No. 0, 201x

(Received 09 November 2018; Accepted 03 December 2018)