Role of Reactive Oxygen Species and Contribution of New Players in Defense Mechanism under Drought Stress in Rice

Muhammad Kamran Qureshi¹, Sana Munir¹, Ahmad Naem Shahzad², Sumaira Rasul³, Wasif Nouman⁴ and Kashif Aslam⁵

¹Department of Plant Breeding and Genetics, Faculty of Agricultural Sciences & Technology, Bahauddin Zakariya University, Multan, Pakistan
²Department of Agronomy, Faculty of Agricultural Sciences & Technology, Bahauddin Zakariya University/Multan, Pakistan
³Institute of Molecular Biology & Biotechnology, Bahauddin Zakariya University, Multan, Pakistan
⁴Department of Forestry, Faculty of Agricultural Sciences & Technology, Bahauddin Zakariya University, Multan, Pakistan
⁵For correspondence: dr.kaslam@gmail.com

Abstract

Rice (Oryza sativa) falls among the staple food crops in different parts of the globe. In current scenario of climate change, drought stress leads to significant decrease in crop production. It has negative effect on rice growth and development by affecting cellular, physiological and molecular processes. Photo-respiration increases under drought stress leading to overproduction of reactive oxygen species (ROS) in different organelles of the cell like chloroplasts, mitochondria and peroxisomes etc., which induce severe oxidative stress in rice. Over production of ROS can cause damage to proteins, lipids and DNA leading to lipid peroxidation, proteins oxidation, mutation, DNA damage that can lead to cell death. Under drought stress, ROS turn over in various organelles overload antioxidant quenching mechanism leading to oxidative damage. Oxidative stress can be overcome by the scavenging system, which consists of enzymatic and non-enzymatic antioxidants. Moreover, ROS also acts as signaling molecule and triggers defense mechanism through specific signal transduction network under stress. Under stress condition, activation of molecular cascades is initiated through the perception of stress that leads to the activation of signal transduction pathway including expression of transcription factors and stress related genes. Understanding of this regulatory mechanism of plant development and growth in drought-ROS stress can be promising in the development of improved transgenic rice under this stress. This review will provide an overview of ROS synthesis and signaling pathway under drought condition in rice. © 2018 Friends Science Publishers

Keywords: Antioxidant; Oryza sativa; Oxidative stress; Photorespiration; Signal transduction; Transcription factors

Introduction

Oryza sativa (Rice) serves as a staple food in different countries of the world (Bishwajit et al., 2013; Chutipajit, 2016) and ranks second among cultivated cereals (Madabula et al., 2016). Asia is on the top in terms of production and consumption of rice. According to FAO report (2016-2017), average production of rice is estimated as 499.1 million tonnes, which is lower as compared to wheat with 760.1 million tonnes in the same year (FAOSTAT, 2017). It is grown in temperate, tropical, subtropical and semi-arid regions. Climate change is becoming major threat and has a negative impact on agriculture especially in the developing countries. Global climate changes manipulate the frequency and extent of hydrological fluctuations, causing floods and drought (Turrall et al., 2011).

Rice yield is adversely affected by about forty-two stresses including both biotic and abiotic (Sarkar et al., 2006). Abiotic stresses include salinity, severe temperatures, drought, heavy metals, ozone and ultra-violet radiations. Drought is one of the important limiting factors among these stresses in terms of growth and production of rice. Rice is particularly susceptible to drought stress as it is a paddy field crop (Tao et al., 2006; Yang et al., 2008).

Based on ecosystem, rice is classified into two categories: low land (Asiatic zone) and upland rice (Latin America and African zone). Lowland rice needs standing water in their paddies and drought can rapidly occur at any stage of the crop under water shortage period affecting the crop and ultimately leads to yield losses. While upland rice rarely experienced standing water and stress ranges from mild to severe under the condition with high evapotranspiration or low rainfall (Kamoshita et al., 2008). In comparison to irrigated production system, rice is more subjected to drought in rainfed areas of the world. Drought can rapidly occur at any stage affecting crop and ultimately leading to yield reduction (Bashir et al., 2016). Under drought stress, rice plant undergo leaf rolling and wilting.
resulted from osmotic variations, decrease in photosynthesis and during reproductive stage there is a reduction in fertility and ultimately yield losses (Kamoshita et al., 2008; Pandey and Shukla, 2015).

In plants, drought can reduce different biological processes e.g. ion uptake, photosynthesis, growth, respiration metabolism and in severe condition ultimately results in plant death (Jaleel et al., 2009). Drought affects overall development and growth of rice by affecting its morphology, physiology, biochemistry and anatomy (Lima et al., 2015). It may suffer from drought stress either at vegetative stage or at reproductive stage. During vegetative growth, reduction in plant height, number of tillers and biomass are affected and rolling of leaves occurs in rice (Ji et al., 2012). Under drought stress, plant releases hormones like ethylene that inhibit leaf and root growth on primary phase (Basu et al., 2016) and stress occurring before flowering reduces yield. At reproductive stage, drought severely disturbs grain development and spikelet infertility resulting in unfilled grains (Kamoshita et al., 2004; Botwright et al., 2008). During grain filling, drought causes early senescence in plant which shortens its filling period (Plaut et al., 2004) resulting in overall yield reduction.

In plant cells, ROS are produced under normal conditions because of partial reduction of the atmospheric oxygen (O\textsubscript{2}). It is generated in plants as a byproduct during normal cellular metabolic processes and can damage cellular components. Different forms of ROS, includes singlet oxygen (1O\textsubscript{2}), superoxide (O\textsubscript{2}-), hydroxyl (OH-) radicals and hydrogen peroxide (H\textsubscript{2}O\textsubscript{2}) produced in organelles such as chloroplasts, peroxisomes and mitochondria having high rate of electron flow or oxidizing activity. These different forms have oxidizing nature (Mittler, 2002) and can damage lipids, proteins (Gill and Tuteja, 2010), or even cause cell death (Nozman et al., 2014). ROS mainly 1O\textsubscript{2} and OH- ions are highly reactive (Mittler et al., 2004). Different forms of ROS, their sources of generation, type of action, extent of reactivity and other features are given in Table 1.

Under normal state, plant cells have a well-regulated antioxidant defense mechanism with the ability to maintain balance between ROS synthesis and scavenging and protects plant cells from oxidative damage (Foyer and Noctor, 2005; Navrot et al., 2007). The antioxidant system consists of enzymatic and non-enzymatic components. These antioxidant systems are localized in various cell organelles like mitochondria, chloroplast, vacuoles, peroxisome etc. similar to enzymatic antioxidants and detoxify different forms of ROS (Das and Roychoudhury, 2014).

The enzymatic antioxidants include catalase (CAT), guaiacol peroxidase (GPX), superoxide dismutase (SOD), enzymes of ascorbate-glutathione (AsA-GSH) cycle such as ascorbate peroxidase (APX), dehydroascorbate reductase (DHAR), monodehydroascorbate reductase (MDHR) and glutathione reductase (GR) (Roy et al., 2009; Gill and Tuteja, 2010). Plant NADPH oxidases catalyze the reduction of dioxygen to O\textsubscript{2} from the oxidation of NADPH. O\textsubscript{2} undergoes a dismutation catalyzed by apoplastic superoxide dismutase (SOD), and produce H\textsubscript{2}O\textsubscript{2}. SOD act as a primary defense against ROS in plant cell (Nozman et al., 2016). SOD converts O\textsubscript{2} to O\textsubscript{2} and H\textsubscript{2}O\textsubscript{2} while CAT catalyzes H\textsubscript{2}O\textsubscript{2} (Roy et al., 2009). Peroxidases oxidize variety of substrates by utilizing H\textsubscript{2}O\textsubscript{2}. Other enzymes also interact with various ROS molecules and detoxify them. The non-enzymatic antioxidants are lipid of water-soluble and membrane associated. These consist of glutathione, carotenoids, flavonoids and tocopherols.

Under stress conditions, the balance between ROS production and its scavenging is disturbed inside the cell (Apel and Hirt, 2004; Velosillo et al., 2010). Thus, exposure of plants to various environmental stresses can results in the overproduction of ROS (Mittler, 2004). Drought stress induces intracellular ROS elevation in plants (Van Breusegem and Dat, 2006). This excessive amount of ROS is generated due to electron leakage to oxygen during respiration and photosynthesis in water deficit plants (Kao, 2017). The overproduction of ROS further results in oxidative stress, which is one of the main damaging factors when plants are exposed to abiotic stresses such as drought (Sharma and Dubey, 2005).

Drought is also a limiting factor in rice production, which can leads to the overproduction of ROS. At lower level of ROS production, the housekeeping antioxidant mechanism acts as a restorer redox homeostasis. Interestingly, apart from acting as toxic molecule, ROS also acts as regulators in plant development and signaling molecule (Chan et al., 2016) as in the induction of tolerance against stresses (Gechev et al., 2006). Therefore, the efficient pathway in improving tolerance against drought induced oxidative damage is either reducing the production of ROS and/or increasing the efficiency of antioxidant activity in rice (Duan et al., 2012; Yin et al., 2015).

Highlighting new players (genes) linked with drought stress signaling pathway is purpose of this review. By controlling ROS scavenging mechanism, rice performance and overall yield can be increased. Role of ROS signaling and cross talk under drought is the important emerging issue to explore the drought-dependent redox signaling. In this cross talk, many key players are involved including gene, proteins and transcription factor. Main focus will be on ROS-(in) dependent transcription factors that are involved in drought stress signaling in rice.

ROS Production under Drought Stress

Drought can also cause imbalance between ROS production and its quenching in rice. Electron leakage is the one of major source of ROS generation. The leakage occur due to electron transport (ET) from activities of different cellular compartments like plasma membrane, mitochondria,
chloroplasts or through different metabolic activities like beta-oxidation that leads to ROS production (Table 2; Blokhina and Fagerstedt, 2010; Heyno et al., 2011; Gilroy et al., 2016; Kerchev et al., 2016; Kao, 2017).

Different cellular responses are generated to cope different environmental stresses. Stability of cell membrane is main criteria of cellular response under stress. Cell membrane is the foremost cell organelle affected by drought. Production of radical ions under drought stress not only induces lipid peroxidation but also causes injury to membrane. Decrease in cell membrane stability in susceptible genotypes under drought is reported in contrast to tolerant genotypes (Chutipaijit, 2016).

Plant response to stress occurs in a systematic way. Signal Transduction is a cascade of reactions by which environmental signals are perceived and transduced into chemical form that in turn activate cell to respond in a specific way. Many signaling molecule are present, which can activate signal transduction processes. These molecules can be classified as primary and secondary messengers. Common second messengers may have an interaction with one another and create a network known as “cross talk”. Plant hormones [auxins (IAA), gibberellins (GA), abscisic acid (ABA), cytokinins (CK), salicylic acid (SA), ethylene (ET), jasmonates (JA) and brassinosteroids (BR)] are molecular essential for the regulation of biological processes such as growth, development, reproduction, survival and plant defense mechanisms (Denance et al., 2013). In nucleus, the biotic and abiotic stress signal is amplified to activate number of genes or the synthesis of regulatory molecules like ABA, SA, JA and ET, which can activate the second step of signaling network etc. Abscisic acid (ABA) is an important signal molecule in rice involved in several physiological processes like germination, seed dormancy, drought stress response (Ye et al., 2011) and cause oxidative stress (Jiang and Zhang, 2001). It was reported that under stress conditions ABA is induced commonly because of activation of genes which encodes ABA biosynthesis. Along with stress signals, ABA made apoplast a major site for H2O2 production (Hu et al., 2006a). ABA play a vital role in cell signaling in response to drought stress in rice and regulate the osmotic balance and enhance drought tolerance (Yin et al., 2017). ABA also induced expression for genes coding for antioxidants such as SOD and CAT (Guan et al., 2000) and thus increases the antioxidants activity such as CAT, SOD and of APX (Jiang and Zhang, 2001).

Jiang and Zhang (2002) reported that inhibition of ABA synthesis reduced the activity of plasma membrane-NADPH oxidase and generation of O2 in leaves and reciprocal effects were obtained by exogenous application of ABA. It showed that NADPH oxidase is involved in ABA induced-ROS production, which ultimately results in induction of antioxidants defense system under drought and enhance drought tolerance in rice (Varshikar and Tan, 2016).

At high level of oxidative stress, ROS can damage plant cellular components and biological molecules. For example, under drought stress excessive electron leakage to O2 occurs during photosynthesis, generating ROS by Mehler reaction. Additionally, during Calvin cycle, the limited CO2 fixation will reduce the NADP+ regeneration triggering the over-reduction of electron transport chain (Gechev et al., 2006; Halliwell, 2006). Drought stress also affects photo-respiratory pathway, which produces excessive amount of H2O2 (de Carvalho, 2008; Miller et al., 2010; Kao, 2017).

In rice leaves, H2O2 and O2- production increased under drought stress. H2O2 and O2- act as intracellular second messengers that regulate the induction of resistance, control different biological processes such as cell cycle, growth, cell death, hormone signaling development and drought stress responses in rice (Duan et al., 2009).

Chloroplast is a robust cellular organelle in terms of having antioxidant enzymes and other metabolites for ROS quenching. Nevertheless, in drought stress, excessive quantity of OH radical is produced in thylakoids of chloroplast. Though OH radical has a short half-life, yet it has strong oxidizing nature and the ability to react with all biological molecules. Additionally, antioxidant defense system is unable to eliminate this extremely reactive radical. Thus, the accumulation of OH radical is deleterious for thylakoid membrane and the overall photosynthetic machinery (Asada, 2006; de Carvalho, 2008). Major limiting factor in rice production is oxidative stress caused by overproduction of ROS in rice organs under drought. Therefore, the efficient way to enhance drought tolerance in rice is to reduce ROS overproduction or enhance antioxidants activity in rice organs (Meng et al., 2012).

Drought Signal Perception and ROS

Drought unlike most stresses triggers signaling cascade in plants. ROS also plays a significant role in this signal transduction under drought (Gilroy et al., 2016). The signaling pathway is highly conserved and initiated by mitogen-activated protein kinases (MAPKs). In rice, under drought stress, transduction signaling pathway is also investigated (Singh and Jwa, 2013). H2O2 induces MAPKs, which are involved in downstream signal transduction cascades, MAPKs then triggers the activation of antioxidant system and ultimately which adjust expression of stress related genes (Kovtun et al., 2000; Samuel et al., 2000). For example, drought hypersensitive mutant 1 (DSM1; a MAPKKK) gene enhances drought tolerance in rice by regulating expression of two peroxidase genes (POX22.3 and POX8.1) expression, and ROS quenching (Ning et al., 2010). The DSM2 mutant also exhibited enhanced tolerance in rice to oxidative and drought stress by controlling xanthophylls and abscisic acid (ABA) cycle (Du et al., 2010). Similarly, overexpressed OsCPK4 gene (member of calcium-dependent protein kinases gene family in rice)
 showed drought tolerance by avoiding lipid peroxidation, which is a symptom of oxidative stress (Campo et al., 2014). Receptor-like kinases also play central role in rice development and in abiotic stresses. The OsSOS1 Stress-Induced Protein Kinase gene 1 (OsSIK1) plays significant role under both salt and drought stress. Overexpressed OsSIK1 rice plants showed tolerance to oxidative, drought and salt stress by inducing antioxidant system. It was observed that the activity of antioxidants enzymes like catalase, superoxide dismutase and peroxidases was higher in overexpressed rice plants with subsequent lower level of H$_2$O$_2$ (Ouyang et al., 2010).

Rice plant roots detect drought stress and transmit the signals produced by hormones to leaves through xylem tissues where these signals trigger the closure of stomata (Miao et al., 2006; Rivero et al., 2007; Boursiac et al., 2008) caused by ABA (Chen et al., 2006; Nahar et al., 2016). The stomatal closure reduces the amount of water loss through transpiration and limits the entry of CO$_2$ in the leaf tissues for photosynthesis in rice (Hung and Kao, 2004; Ji et al., 2012; You et al., 2013). Cross talk also exists between ROS and ABA under drought stress. Under drought, ABA accumulates in plants, which triggers the activation of ABA-dependent downstream response in plant cell. In rice guard cells, ABA is responsible for the synthesis of H$_2$O$_2$ by NADPH oxidase (Hung and Kao, 2004). H$_2$O$_2$ further helps in stomatal closure (Kwak et al., 2003) that leads in the reduction of water loss during transpiration in rice (You et al., 2013).

Additionally, ROS signals originate from organelles during stress are also responsible for transcriptional reprogramming that can either protect plant cell or induce programmed cell death (Foyer and Noctor, 2005; Gechev et al., 2006; Rhoads et al., 2006). This type of reprogramming also exists in rice, which involves organelle retrograde signaling in mediating ROS in synchronization with stress response. H$_2$O$_2$ production rate is faster in peroxisomes and chloroplasts (Foyer and Noctor, 2003), whereas, mitochondria are the more susceptible to such type oxidative damage induced by H$_2$O$_2$ (Bartoli et al., 2004). Downstream events altered by H$_2$O$_2$ in rice are protein phosphorylation, calcium mobilization, and gene expression (Steffens and Sauter, 2009).

Table 1: Forms and production of ROS in plant cell and their features

<table>
<thead>
<tr>
<th>Forms of ROS</th>
<th>Half life</th>
<th>Extent of reactivity</th>
<th>Type of action</th>
<th>Source of generation in cells</th>
<th>References</th>
</tr>
</thead>
<tbody>
<tr>
<td>O$_2$</td>
<td>3 ms</td>
<td>Highly reactive</td>
<td>Oxidize lipids, nucleic acid, proteins</td>
<td>ET reactions of photosystem II and photoinhibition in chloroplasts,</td>
<td>(Zulfugarov et al., 2014)</td>
</tr>
<tr>
<td>H$_2$O$_2$</td>
<td>1 ms</td>
<td>Moderately reactive</td>
<td>Oxidize thiol group of enzymes</td>
<td>Urate oxidase, Photorespiration and MnSOD and β-oxidation of fatty acid present in peroxisomes. ETCs of endoplasmic reticulum, chloroplasts, plasma membrane and mitochondria.</td>
<td>(Kao, 2014)</td>
</tr>
<tr>
<td>OH</td>
<td>1 ns</td>
<td>Very reactive</td>
<td>React with lipids, proteins and DNA</td>
<td>O$_2$ decomposition occurs in apoplastic zone.</td>
<td>(Foyer et al., 1997; Gill and Tuteja, 2010)</td>
</tr>
<tr>
<td>O$_2^•$</td>
<td>2-4µs</td>
<td>Moderately reactive</td>
<td>React with iron-sulfur compounds</td>
<td>Fenton reaction, mitochondrial ETCs reactions, photooxidation reactions, peroxisomes, glyoxysomal photorespiration and plasma membrane. NADPH oxidase in membranes. OH$^•$ and O$_2$ reactions in apoplastic zone. Polypeptides and Xanthine oxidase in peroxisomes.</td>
<td>(Karuppanapandian et al., 2011; Zulfugarov et al., 2014)</td>
</tr>
</tbody>
</table>

1O$_2$ = Singlet oxygen; H$_2$O$_2$ = Hydrogen peroxides; OH$^•$ = Hydroxyl ion; O$_2^•$ = Superoxide ion; MnSOD = Manganese-superoxide dismutase, ETC = electron transport chain, O$_3$ = Ozone, NADPH = Nicotinamide adeninedinucleotide phosphate

Table 2: ROS production in different sites of cellular organelles

<table>
<thead>
<tr>
<th>Sites</th>
<th>Majorly produce</th>
<th>Biochemical processes responsible for ROS production</th>
<th>References</th>
</tr>
</thead>
<tbody>
<tr>
<td>Peroxisomes</td>
<td>O$_2$, H$_2$O$_2$</td>
<td>Flavin oxidases reactions, disproportionation of O$_2$ radicals and beta-oxidation of fatty acids and oxidation of glycolate. O$_2$ generated by xanthine oxidase (XOD) in peroxisomes and then converted by SOD to Gland H$_2$O$_2$.</td>
<td>(del Río et al., 2006)</td>
</tr>
<tr>
<td>Mitochondria</td>
<td>H$_2$O$_2$, O$_2$, OH</td>
<td>Over reduction of ETC. Over-reduction of the ubiquinone (UQ). Major sites complex I (NADH dehydrogenase) and complex III (ubisemiquinone) produces O$_2$;</td>
<td>(Davidson and Schiest, 2001; Rhoads et al., 2006; Quan et al., 2008; Miller et al., 2010)</td>
</tr>
<tr>
<td>Chloroplasts</td>
<td>O$_2$, H$_2$O$_2$, O$_2$</td>
<td>Over reduction of ETC in photosystems I and in photosystem II (PSII) electrons leakage from QA and QB leads to ROS production</td>
<td>(Cleland and Grace, 1999; Miller et al., 2010)</td>
</tr>
<tr>
<td>Endoplasmic reticulum</td>
<td>O$_2$</td>
<td>Cytochrome P$_450$ reacts with an organic substrate which leads to the production of superoxide</td>
<td>(Mittler, 2002)</td>
</tr>
<tr>
<td>Apoplast</td>
<td>H$_2$O$_2$</td>
<td>Apoplastic ROS are produced by the enzymes oxidases and peroxidases and polyamine oxidases, oxalate oxidase</td>
<td>(Mittler, 2002; Moschou et al., 2008; Voothuluru et al., 2013)</td>
</tr>
<tr>
<td>Cell wall</td>
<td>H$_2$O$_2$, OH</td>
<td>Cell wall malate dehydrogenase and diame oxidases are responsible for ROS production. Production of superoxide is regulated by the NADPH in the plasma membrane</td>
<td>(Kao, 2014)</td>
</tr>
<tr>
<td>Plasma membrane</td>
<td>H$_2$O$_2$</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

1O$_2$ = Singlet oxygen; H$_2$O$_2$ = Hydrogen peroxides, OH$^•$ = Hydroxyl ion; O$_2^•$ = Superoxide ion; SOD = Superoxide dismutase, ETC = Electron transport chain, NADH = Nicotinamide adenine dinucleotide hydrogen, QA = Primary acceptor quinone, QB = Secondary acceptor quinone; NADPH = Nicotinamide adenine dinucleotide phosphate
The cytosolic Ca$^{2+}$ increases through the activation of Ca$^{2+}$ permeable channels. ROS has been shown to induce the activation of these channels. In addition, H$_2$O$_2$ also induces MAPKs, which further triggers signaling cascade and modulation of gene expression. It also promotes the accumulation of antioxidants and induces the expression of respective genes like the up-regulation of AOX nuclear genes, increasing the synthesis of mitochondrial AOX enzyme thus regulating the redox status of the plant cell (de Carvalho, 2008).

Effect of Drought on Rice Plant

Drought stress is one of the limiting components in rice production as it causes cellular dehydration. Rice displays a variety of morphological, biochemical and physiological responses against water stress. These responses include stomatal closure, leaf rolling, osmotic adjustment and high relative water contents (Lima et al., 2015; Nahar et al., 2016). In rice, water stress at vegetative stage results in reducing photosynthesis efficiency, reduction in the rate of leaf expansion, leaf rolling, stunted growth, leaf senescence, reducing number of tillers and yield losses. Growth retardation starts because of poor root growth and reduction in leaf traits such as cuticular wax, colour, pubescence etc. (Nahar et al., 2016). This disturbs the radiation absorption by leaf canopy inhibiting the energy reserves and affecting normal maturity (Blum, 2011). Drought stress also causes early leaf senescence that starts from the leaf tips and extended through the whole rice plant parts and eventually to all tillers (Bunnag and Pongthai, 2013). Drought influence various physiological processes and induces respective responses in rice like transpiration rate, net photosynthesis, stomatal conductance, intercellular CO$_2$ relative water contents, water use efficiency and photosystem activity (Liu et al., 2006; Chaves et al., 2009; Zlatev, 2009; Yang et al., 2014).

Rice plant cells losses turgidity that is due to reduced water availability resulting in the reduction in cell division and expansion, severely affecting cell growth. Drought influences both cell expansion and elongation thus decreasing number of tillers and plant height of rice (Bunnag and Pongthai, 2013). Thus, it significantly reduces fresh/dry weight of plants affecting biomass production. The decreased shoot and root weight and their length ultimately lowers the rate of water uptake and photosynthesis. Both cell growth and photosynthesis are the vital processes affected by drought. It can directly affect the availability of CO$_2$ diffusing through the mesophyll and the stomata (Flexas et al., 2007). It decreases leaf photosynthetic machinery (Ort, 2001). These effects can vary with time and intensity of stress along with plant species and leaf age. Mature leaves are more affected by the drought as compared to younger leaves (Munns, 2002; Flexas et al., 2004).

Stomatal closure results due to the poor atmospheric vapor pressure and leaf turgor (Chaves et al., 2009) leading to lower photosynthesis rate under drought (Flexas et al., 2004; Chaves et al., 2009). Drought stress decreases the ability of mesophyll cells to use the existing CO$_2$ (Karaba et al., 2007). Consequently, quantity of active chlorophyll also decreases (Sarwar et al., 2013). So, reduced photosynthetic activity results in insufficient photosynthetic products required for normal activities in plant cells leading to poor growth of rice plant (Bunnag and Pongthai, 2013). Drought adversely influences functionality of photosystem I and II (PSI, PSII) (Liu et al., 2006; Zlatev, 2009). PSII activity is crucial in reduction reaction and ATP synthesis. Under unfavorable condition, the over-production of electrons in electron transport chain leads to ROS over-production. A balance must be maintained between the photo-assimilates requirement and photochemical activity. Drought disturbs this balance in rice plant especially in the flag leaf. It also causes damage to oxygen evolving center (OEC) located in PSII (Kawakami et al., 2009) and degradation of D1 polypeptide (subunit of the PS II reaction center) leading to the inactivation of PSII reaction complex (Liu et al., 2006; Zlatev, 2009). Such inactivation leads again to the production of ROS, which further leads to photo-inhibition and oxidative damage (Ashraf, 2009; Gill and Tuteja, 2010).

Osmoregulation is the major process in plant (Thapa et al., 2011). Accumulation of various osmoslytes such as proline, soluble sugar, phenolic contents and total free amino acids increases under drought stress and plays role in drought tolerance in plants by ROS scavenging (Anjum et al., 2017). In plants, free proline and soluble sugar accumulation is involved in drought tolerance (Ito et al., 2006). Glycine betaine (GlyBet) also protects photosynthetic machinery by stabilizing the Ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) structure and acts as oxygen ion scavenger under drought stress (Chen and Murata, 2008; Rezaei et al., 2012). Exogenous application of GlyBet enhances the growth and yield in rice (Farooq et al., 2009).

As yield is the ultimate objective of any crop plant. Drought has a negative effect on rice especially at reproductive stage and is responsible for low crop productivity (Pantuwan et al., 2002). Time, duration and intensity of drought stress are linked with the delayed flowering. Particularly drought occurring at the end of vegetative stage results in delayed panicle development (Jonaliza et al., 2004). The yield decline may be due to impairment of photosynthesis causing disturbance in source-sink ratio, phloem loading and translocation of assimilates. This may be attributed to reduction in CO$_2$ level, stomatal conductance, leaf area, chlorophyll pigments, water use efficiency and starch and sucrose synthesizing enzymes. All these attributes contribute to the reduction in rice plant growth and development resulting of overall losses in grain yield (Farooq et al., 2009; Anjum et al., 2011). Fig. 1 illustrates drought stress affecting possible mechanisms, which ultimately leads to retarded growth and yield reduction in rice.
Drought stress in Rice

- Stomata closure
- ROS
- Loose turgidity
- Low carbohydrates level
- Reduction in cell division
- DNA damage, lipids peroxidation, proteins oxidation, damage to chloroplasts
- Cell death
- Sporadic sterility
- Low photosynthetic rate
- Plant height
- Number of tillers
- Post grain filling
- Retarded growth and reduced Yield

Fig. 1: Drought stress affecting possible mechanisms which ultimately lead to retarded growth and reduced yield in rice plant

In rice, drought induces spikelet sterility, which is responsible in reduction of rice yield (Jongdee et al., 2002). Fluctuation in carbohydrates level and activities of enzymes linked with the blockage of starch accumulation in pollens are main causes of sterility in spikelet (Sheoran and Saini, 1996). Additionally, drought enhances the formation of ROS resulting in peroxidation of lipids, denaturation of proteins and nucleic acid damage affecting the whole metabolism (Hansen et al., 2006; Gill and Tuteja, 2010) resulting in the reduction in grain yield. ROS acts both as stress and as signaling molecule, therefore understanding the production and quenching of ROS and its signaling role against (a) biotic stresses especially under drought stress and is very important in enhancing defense mechanism within plant cells.

Antioxidant Defense System and ROS

Plant possesses antioxidant defense system as a protection against oxidative damage (Gill and Tuteja, 2010). Antioxidants consist of enzymatic components such as MDHAR, CAT, GR, APX, SOD, GPX and enzymes involved in ascorbate-glutathione cycle (Mittler et al., 2004; Karuppanapandian et al., 2011; Kao, 2017). The detail of cellular location, features and role of enzymatic antioxidants in ROS scavenging is described in Table 3. Phenolic compounds, tocopherol, carotenoid, flavonoids and glutathione are the components of non-enzymatic antioxidant defense system (Ji et al., 2012). These compounds not only affect plant growth and development but also affecting the phenomena from cell enlargement and mitosis to senescence and even cell death (de Pinto and Gara, 2004). Location and role of non-enzymatic antioxidants with their features are given in Table 4.

The improvement in the expression of this system can improve tolerance in rice against drought stress (Wang et al., 2005b). Therefore, increasing the efficiency of antioxidant system components can be a strategy against oxidative stress and increasing drought tolerance mechanism (Table 5). For example, activities of enzymatic antioxidants like CAT, POD and SOD increases under drought stress effectively decreasing the level of intracellular ROS in rice (Yang et al., 2014). It was observed that the activity of SOD increased in rice under drought stress, exhibiting its role in detoxifying ROS under this type of abiotic stress. The activity of CAT enzyme is heterogeneous under drought stress. The reports indicated that the CAT activity either increases, unchanged or even decreases under drought stress in different plant species. Meng et al. (2012) also reported SOD1 mimic significant reduction in ROS production in rice root and leaf while increasing the antioxidants activity comprising on CAT and SOD1. It causes drought tolerance in rice tissues.

APX are the enzymatic antioxidants that convert H2O2 into O2 and H2O. It is suggested that APX is the major counteracting enzyme for ROS under drought stress. When activity of APX is inhibited due to excessive amount of ROS, CAT plays the role of quenching ROS. Compared to APX, which is present in different cellular organelles, CAT is present only in peroxisomes and removes excessive amount of ROS generated under stress conditions providing a clue of variation in its activity (de Carvalho, 2008). However, CAT activity can be inhibited by herbicides induced by ROS like methyl-violeton/paraquat (PQ) and 3-aminotriazole (AT) (Gechev et al., 2008; Qureshi et al., 2011). The rice APX plays an important role in development especially at seedling and reproductive stage by scavenging H2O2 under drought and some of the other abiotic stress (Zhang et al., 2013).

The enzymes SOD, CAT and POD are vital antioxidant enzymes in rice cell (Chutipajjit, 2016). Among enzymatic antioxidants, ROS scavenging mechanism consists of two steps. In first step, SOD convert superoxide radicals into H2O2 while in second step H2O2 is further catalyzed by the POD and POD into H2O to guard plant cell from H2O2 accumulation. However, H2O2 produced in result of SOD enzyme can perform a dual function either playing a role in oxidative stress signaling or act as secondary messenger to defend reactions leading to produced POD and CAT activity in rice plants.
Role of Reactive Oxygen Species in Rice under Drought Stress / Int. J. Agric. Biol., Vol. 00, No. 0, 201X

Table 3: Enzymatic antioxidants under drought stress their location and features in plants

<table>
<thead>
<tr>
<th>Enzymatic Antioxidants</th>
<th>Location</th>
<th>Scavenging ROS form</th>
<th>Features and their Role</th>
<th>References</th>
</tr>
</thead>
<tbody>
<tr>
<td>Superoxide dismutase</td>
<td>Cytosol, Chloroplasts, Peroxisomes and Mitochondria</td>
<td>O$_2^•$</td>
<td>Dismutate O$_2^•$ and reduced to H$_2$O$_2$ and oxidized to O$_3$. Enhanced drought tolerance.</td>
<td>(Roy et al., 2009; Gill and Tuteja, 2010)</td>
</tr>
<tr>
<td>Guaiacol peroxidase</td>
<td>Chloroplasts, Cytosol, Mitochondria and Endoplasmic reticulum</td>
<td>H$_2$O$_2$</td>
<td>Many biosynthetic processes are in association of GPX comprising cell wall’s lignification, wound healing, ethylene synthesis, degradation of IAA and resistance against drought.</td>
<td>(Asada, 2000)</td>
</tr>
<tr>
<td>Ascorbate peroxidase</td>
<td>Cytosol, Peroxisomes, Chloroplasts, and Mitochondria</td>
<td>H$_2$O$_2$</td>
<td>Significant role is played by APX in maintaining the ROS levels in cells. APX reduces H$_2$O$_2$ to water.</td>
<td>(Gill and Tuteja, 2010)</td>
</tr>
<tr>
<td>Monodehydroascorbate reductase</td>
<td>Chloroplasts, Mitochondria, and Cytosol</td>
<td>H$_2$O$_2$</td>
<td>MDHAR catalyzes the regeneration of AsA from MDHA. It has ability to use MDA an organic radical as a substrate and to reduce phenoxyl radicals.</td>
<td>(Sharma et al., 2012)</td>
</tr>
<tr>
<td>Dehydroascorbate reductase</td>
<td>Chloroplasts, Mitochondria, and Cytosol</td>
<td>H$_2$O$_2$</td>
<td>It catalyzes reduction of DHA by GSH to AsA and shows a vital role in maintenance of AsA (reduced form).</td>
<td>(Boo and Jung, 1999; Sharma and Dubey, 2005)</td>
</tr>
<tr>
<td>Glutathione reductase</td>
<td>Cytosol, Chloroplasts, and Mitochondria</td>
<td>GSSG</td>
<td>GSSG is reduced to GSH by GR and cellular GSH/GSSG ratio is thus maintained by GR. It contains an essential disulfides group. It also detoxifies H$_2$O$_2$ produced in Mehler reaction. H$_2$O$_2$ produced in peroxisomes is mainly scavenged by CAT.</td>
<td>(Sharma et al., 2012)</td>
</tr>
<tr>
<td>Catalase</td>
<td>Peroxisomes, Glyoxysomes, and Mitochondria</td>
<td></td>
<td>Has specificity for H$_2$O$_2$. CAT enhances the tolerance against abiotic stress in transgenic plants</td>
<td>(Roy et al., 2009)</td>
</tr>
</tbody>
</table>

H$_2$O$_2$ = Hydrogen peroxides; O$_2^•$ = Superoxide ion, O$_3$ = Oxygen, GPX = Guaiacol peroxidase, IAA = Indoleacetic acid, APX = Ascorbate peroxidase, MDHAR = Monodehydroascorbate reductase, AsA = Ascorbic acid, MDHA = Malondialdehyde, GSH = Glutathione, GSSG = Glutathione disulfide, GR = Glutathione reductase, CAT = Catalase

Table 4: Non-Enzymatic antioxidants their location and features in plants

<table>
<thead>
<tr>
<th>Non-enzymatic Antioxidants</th>
<th>Location</th>
<th>Detoxify</th>
<th>Features and their Role</th>
<th>References</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ascorbic Acid</td>
<td>Cytosol, Chloroplasts, Peroxisomes and Mitoplast</td>
<td>H$_2$O$_2$</td>
<td>Ascorbic acid has a key role in defense against oxidative stress caused by overproduction of ROS. AsA plays an important role in several physiological processes in plants, including growth, differentiation and metabolism</td>
<td>(Sharma and Dubey, 2005)</td>
</tr>
<tr>
<td>Glutathione</td>
<td>Cytosol, Chloroplasts, Peroxisomes, Mitoplast</td>
<td>H$_2$O$_2$, OH, and O$_2^•$</td>
<td>It is non-protein thiol that plays an important role in intracellular defense against ROS-induced oxidative damage. GSH plays an important role in diverse biological processes, including cell growth/division, signal transduction, synthesis of proteins and nucleic acids, and the expression of the stress responsive genes.</td>
<td>(Sharma and Dubey, 2005)</td>
</tr>
<tr>
<td>Flavonoids</td>
<td>Leaves, floral parts, pods and vacuoles</td>
<td>OH and O$_2^•$</td>
<td>Flavonoids have many functions like flowers, fruits, and seed pigmentation, protection against UV light, defense against phyto-pathogens, role in plant fertility and germination of pollen. Flavonoids can directly scavenge H$_2$O$_2$ and OH.</td>
<td>(Lerdal et al., 2010; Olsen et al., 2010)</td>
</tr>
<tr>
<td>Tocopherols</td>
<td>Membranes</td>
<td>Lipid peroxides, and quinone</td>
<td>Tocopherols belong to lipophilic antioxidants group involved in scavenging of oxygen free radicals, lipid peroxyl radicals, and O$_2^•$. Tocopherols protect lipids and other membrane components by physically quenching and chemically reacting with O$_2^•$ in chloroplasts, thus protecting the structure and function of PSII.</td>
<td>(Foyer et al., 1997; Kiffin et al., 2006)</td>
</tr>
</tbody>
</table>

$O_2^•$ = Singlet oxygen; H_2O_2 = Hydrogen peroxides; OH = Hydroxyl ion; $O_2^•$ = Superoxide ion, AsA = Ascorbic acid, GSH = Glutathione

Furthermore, it was revealed that the small increase in POD and CAT activity in drought-susceptible genotypes could decrease efficiency of rice plant cell to scavenge ROS (Chutipaint, 2016). Drought tolerance in rice can be achieved by scavenging ROS using dehydrin proteins. Transgenic plants with overexpressed dehydrin proteins showed lower level of H_2O_2 production and thus rescue the rice plant from oxidative stress (Kumar et al., 2014).

Other antioxidants, which play role especially in rice under drought stress, are glutathione (GSH), GR and MDHAR (Pandey and Shukla, 2015). Similarly, GPX are diverse antioxidant isozymes that reduce ROS and protect plant cellular component against oxidative stress. GPX are effective scavengers of lipid hydro-peroxides and H_2O_2 and enhance abiotic stress tolerance in rice (Koji et al., 2009). They help in maintaining membrane integrity, redox homeostasis and tolerance to oxidative stress (Islam et al., 2015). In rice, under drought stress, accumulation of proline showed that it is involved in solute regulation and reduction of water loss and thus play an important role in osmosis regulation. Proline also provides energy to growth and thus helps rice to tolerate water stress (Lum et al., 2014). Improving the naturally occurring enzymatic and non-enzymatic antioxidant components can be one of the strategies of either preventing or reducing oxidative stress and thus improving drought tolerance in plants.

Novel Genes Linked with Tolerance and ROS Scavenging Mechanism

In stress perception to stress-responsive signaling transduction network, different transcription factors functions as transcriptional switches for the expression of stress related genes (Jiang et al., 2015).
Drought triggers the expression of a huge array of genes inside the cell. The expression of these genes is regulated by complex transcriptional factors (Amorim et al., 2016; Gahlaut et al., 2016). Several key genes in this regulatory network have been identified and characterized. We are highlighting ROS-dependent transcriptional networks under drought stress condition in plants, particularly in rice.

Zinc finger proteins (ZFP) have an important role in cellular processes in eukaryotes (Englbrechts, 2004). These proteins are involved in growth and development; stress and subsequent stimulation of the defense response in plants (Huang et al., 2009a; Wang et al., 2005a). Additionally, member of ZFP family play role in plant response to oxidative stress (Qureshi et al., 2013; He et al., 2016). Rice ZFPs have also been found to have a role in drought stress response. ZFP245 gene transferred to rice showed tolerance for exogenous H$_2$O$_2$ indicating the activate role of the gene in antioxidant system. Transgenic rice with overexpressed ZFP245 exhibited enhanced tolerance to cold, salt and drought stress. It was observed that ZFP245 triggers the ROS scavenging system by activating antioxidant SOD in rice under drought stress (Huang et al., 2009a). In addition, various members of Cys2/His2 (C2H2) type ZFPs viz.-ZFP179, ZFP152, ZFP245 and ZFP252 are involved in responses against drought and oxidative stress in rice. C2H2 type ZFPs have key role in management of ROS signaling. Overexpression of ZFP179 and ZFP245 enhances the drought tolerance to oxidative stress by enhancing SOD and peroxidases activities (Huang et al., 2009a; Sun et al., 2010). Similarly, drought and salt tolerance (DST) gene control stomatal closure by regulating the H$_2$O$_2$ level in guard cells. Mutation of DST activates the stomata closure due to the H$_2$O$_2$ gathering in guard cells. Consequently, tolerance to drought and salt is achieved in plants (Huang et al., 2009b). Recently, it was found that DST works in close association with DST Co-activator 1 (DCA1) in the control of stomatal aperture and regulation of downstream genes under both drought and salt stress. In guard cells, this DST-DCA1 complex regulates gene expression involved in the synthesis of peroxidase precursor. Peroxidase is involved in the detoxification of H$_2$O$_2$. DCA1 negatively regulates drought stress tolerance as over expression of this gene results in intensified sensitivity to stress (Cui et al., 2015). Higher peroxidase activity was observed with overexpression of OsAHL1 gene involved in drought tolerance in rice by alleviating plasma membrane (Zhou et al., 2016).

The WRKY belong to a group of large family comprising of 102 and 74 members in Oryza sativa and Arabidopsis thaliana, respectively. The WRKY name is derivative of the presence of conserved 60 amino acid WRKY domain (Wu et al., 2005). Different members of this family are involved in response to (a) biotic stresses. The increased genetic expression of these WRKY proteins has been associated frequently in response to ROS and ABA in rice under water deficit conditions. For example, OsWRKY30 play significant role in drought stress as the overexpression of this gene in rice was found to increase drought tolerance. Moreover, the OsWRKY30 protein also interacts with MAPKs suggesting its downstream interactive role with MAPK cascade (Shen et al., 2012). Another member of this family (OsWRKY45) also play an important role against drought stress is Arabidopsis and rice (Qiu and Yu, 2008; Tao et al., 2011). The Arabidopsis transcriptional factor (WRKY57) when transferred to rice confers drought tolerance. These transgenic rice plants exhibited reduced water loss, malondialdehyde (MDA) contents, electrolyte leakage and cell death symptoms, while these plants were also higher in antioxidant enzymes and proline contents. An up-regulation of stress responsive genes was also observed in these transgenic rice plants against drought stress (Jiang et al., 2016).

In plants, NAC (for NAM, ATAF1-1,2, and CUC2) transcription factor family is one of the largest transcription

Table 5: Measurement of antioxidants at sensitive stages of rice prone to drought stress

<table>
<thead>
<tr>
<th>Sensitive stages of rice</th>
<th>Antioxidants activity</th>
<th>References</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vegetative stages</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Seedling stage</td>
<td>SOD and APX activity increases under low and mild stress while decrease in severe stress while subsequent increase occurred with stress severity in case of GPX,CAT, POD and SOD activity increases under stress in rice. Thus, showing antioxidants activity is correlated with drought tolerance in rice</td>
<td>(Mishra and Panda, 2017; Lum et al., 2014; Chutipajai, 2016)</td>
</tr>
<tr>
<td>Flag leaf stage</td>
<td>MDA content increases depicting more lipid peroxidation in susceptible rice genotypes under drought stress. SOD converts O$_2^-$ radical into H$_2$O$_2$ which is further quenched by APX and CAT within cells. Antioxidants activity increases under stress leading to tolerance in rice genotypes</td>
<td>(Refli et al., 2014)</td>
</tr>
<tr>
<td>Jointing stage</td>
<td>SOD, CAT, APX, POD and GR significantly increased under drought and linked with drought tolerance in rice</td>
<td>(Duan et al., 2009)</td>
</tr>
<tr>
<td>Reproductive stages</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Booting stage</td>
<td>DHAR and SOD activity increased under drought stress and provide antioxidant defense against oxidative stress in tolerant rice genotypes</td>
<td>(Ji et al., 2012)</td>
</tr>
<tr>
<td>Panicle initiation</td>
<td>Higher antioxidant activity of SOD, APX, GR and GSH showed an important role in oxidative defense in rice tolerant genotypes by minimizing drought induced spikelet sterility</td>
<td>(Selote and Chopra, 2004)</td>
</tr>
<tr>
<td>Heading stage</td>
<td>Less MDA content and high SOD and POD activity was measured in drought tolerant rice genotypes while reciprocal results were obtained in susceptible genotypes</td>
<td>(Li et al., 2015)</td>
</tr>
<tr>
<td>Grain filling stage</td>
<td>SOD activity increase under drought stress in mild stress in comparison to severe drought stress in rice</td>
<td>(Refli et al., 2014)</td>
</tr>
</tbody>
</table>

SOD = Superoxide dismutase, APX = Ascorbate peroxidase, GPX = Guabacol peroxidase, CAT= Catalase, POD = Peroxidases, MDA = Malondialdehyde, O$_2^-$ = Superoxide ion, H$_2$O$_2$ = Hydrogen peroxides, GR = Glutathione reductase, DHAR = Dehydroascorbate reductase, GSH = Glutathione
Role of Reactive Oxygen Species in Rice under Drought Stress / Int. J. Agric. Biol., Vol. 00, No. 0, 201x

factor families consisting of over a 100 family members in *Arabidopsis* (Riechmann et al., 2000). Many NAC proteins are involved in hormone related processes such as plant growth and development and in different environmental stresses (Xie et al., 2000; Fujita et al., 2004). In rice, about 151 NAC genes were identified from genome-wide data analysis (Nuruzzaman et al., 2010). Evidences indicate that members of NAC family are involved in drought tolerance or oxidative stress (Chen et al., 2016; Zhu et al., 2016). These transcriptional factors include OsNAC1, OsNAC5, OsNAC6 and OsNAC10 (Hu et al., 2006b; Nakashima et al., 2007; Takasaki et al., 2010). Few of these transcriptional factors are also involved in tolerance to oxidative stress. Such as, OsSRO1c a rice homologue of SRO (a protein family) was characterized with SNAC1 (stress responsive NAC 1). Overexpression of OsSRO1c leads to enhanced drought and oxidative stress tolerance (You et al., 2013). Similarly, overexpression of OsNAC5 (Song et al., 2011) and ONAC095 transcription factor improves drought and oxidative stress tolerance in rice (Huang et al., 2016).

In plants, drought stress induces ROS generation, which in turn triggers the expression of several ROS scavenging gene families. These include genes expressing APX, SOD, myo-inositol monooxygenase, peroxidodoxins, MDHAR glutathione S-transferases and genes for proline synthesis (a non-enzymatic antioxidant). *Manganese superoxide dismutase (MnSOD)* gene expresses itself in chloroplast of transgenic rice and enhances the tolerance of rice by increasing the antioxidant capacity via higher SOD activity. About 1.5 folds increase in the SOD activity was observed in MnSOD transgenic rice. Plants expressing SOD can protect their photosynthetic apparatus and transgenic plant has a higher photosynthetic rate than the wild type plants under drought stress (Wang et al., 2005b). Cytosolic copper/zinc-containing superoxide dismutase (*Cu/Zn SOD*) removes toxic superoxides from plant cells (Pan et al., 2001). *Cu/ZnSOD* gene was transferred from *Avicennia marina* to *Oryza sativa* (Pusa Basmati-1) and thus transgenic plants increased tolerance to drought stress. Transgenic rice with the overexpression of SOD1 (cDNA of cytosolic *Cu/Zn SOD*) showed tolerance for oxidative and drought stress (Prashanth et al., 2008). APX is an antioxidant enzyme that converts H$_2$O$_2$ into water. Rice genome contains eight APX genes that translate different isoforms of APX enzyme. Out of these genes, OsAPX2, a member of cytosolic APX genes (Teixeira et al., 2006) and key element of reactive oxygen network in rice genome, plays role in defense against oxidative injury caused by drought stress in rice seedlings (Zhang et al., 2013). It has been reported that APX8 and APX3 genes were responsible for drought tolerance in IR64 and Nagina 22 rice genotype, respectively (Prakash et al., 2016).

GPXs are a group of antioxidant enzymes having peroxidases without haem-thiol group. These enzymes reduce H$_2$O$_2$ to water and lipid hydroperoxides to their respective alcohols by using reduced GSH. It has been shown that *Pennisetum glaucum* GPX (PgGPX) gene plays a significant role against limited water stress in transgenic rice plants. These transgenic plants have lesser amount of MDA and ROS and higher proline contents. This clearly indicates that the PgGPX gene is involved in the repression of ROS production by sustaining a higher level of antioxidant defense activity (Islam et al., 2015). MIOX is a myo-inositol monooxygenase, which has a key role in production of ascorbic acid a major antioxidant which reduces oxidative damage (Shao et al., 2008). Overexpression of OsMIOX (myo-inositol oxidoreductase gene) enhances drought tolerance and ROS scavenging ability leading to decrease in oxidative damage in rice (Duan et al., 2012). Ornithine δ-aminotransferase (δ-OAT) is an enzyme in plants involved in proline synthesis (Stranska et al., 2008). Proline is a major non-enzymatic antioxidant, which scavenges ROS under abiotic stress (Gill and Tuteja, 2010). Transgenic rice with the overexpression of OsOAT gene showed enhanced tolerance to drought stress. Overexpression of OsOAT in rice also increases the activities of certain enzymes involved in ROS quenching and antioxidants such as GSH content and protect cells from oxidative damage (You et al., 2012). Access to these genes is due to molecular breeding which upgraded many varieties with enhanced tolerance against abiotic stress in rice (Gonzaga et al., 2015).

Conclusion and Future Prospects

It is evident that drought is a major limiting factor of rice production in the world. Drought adversely affects photosynthesis and cell growth and development in rice. Drought stress leads to closure of stomata resulting in lower photosynthesis rate and increases photorespiration, which leads to overproduction of ROS. As a consequence, the balance of ROS and antioxidants is disturbed, leading to excessive production of ROS, which further leads to oxidative stress. ROS acts not only as phytoxic molecule it also has a signaling role under drought stress. ROS signaling function is under strict control of antioxidant scavenging system and any imbalance between the production and scavenging of antioxidants can effect signal transduction. There is a complex cross-talk between ROS and ABA, calcium and other signaling molecules during drought perception and plant response in addition to other (a) biotic stresses. Plants exhibits drought tolerance through expression of gene cascade that is involved in ROS-dependent pathway. The genes especially transcription factors that are upstream of this pathway are important in regulating the expression of other genes to help reduce ROS toxicity, osmotic stress and maintain plant productivity under drought stress. A large number of gene families are present in rice that have regulatory role yet the data available for drought related gene, especially are linked to ROS, is inadequate as compared to *Arabidopsis*.
Additionally, the information on transcriptional factors and their cis-elements is also not available. The information is also lacking for the step-wise activation of ROS dependent and drought associated protein kinase and subsequent cascade. Therefore, further research, for the identification and characterization of drought-ROS responsive genes, is needed to gain a better understanding of cellular mechanism against drought stress. Bioinformatics and expression analyses can be valuable tools for the exploration of transcription factors along with their target genes. Some new genes have been discovered which can help plant to tolerate drought and oxidative stress. Characterization of these key drought tolerant genes can acts as biomarkers of rice stress response. Moreover, drought stress is a complex trait and plant behavior is dependent on the application of drought treatment. For example, there is a difference in plant response to water deficit conditions compared to that of application of chemicals (Polyethylene glycol) that create osmotic pressure and thus reduces water uptake by plants. The plant behavior in the field is also different to that in the controlled environmental conditions. Nevertheless, the technological advancement and progress of expressional data of genes will increase our knowledge of ROS linked drought response in rice. To fulfill the world’s requirement for rice, further discoveries are needed to understand the regulatory process of drought induced ROS response and tolerance of plant. Research has to be focused on plants, which can withstand the severe environmental conditions like drought and have the ability to scavenge ROS.

References

Role of Reactive Oxygen Species in Rice under Drought Stress / Int. J. Agric. Biol., Vol. 00, No. 0, 201x

Li, Y., J. Xiang, Y. Wang, L. Zheng, Y. Fan, Y. Li and F. Zhao, 2015. Analysis of antioxidant characteristics and related gene expression profiles of rice drought-tolerance lines derived from embryo-soaking with Alternanthera philoxeroides DNA solution. RRBS, 4: 30–36

Role of Reactive Oxygen Species in Rice under Drought Stress / Int. J. Agric. Biol., Vol. 00, No. 0, 201x

