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Abstract 
 

In this study, we obtained a batch of simple sequence repeats (SSRs) from the transcriptome data of Asian moon scallop 

Amusium pleuronectes and analyzed the distribution and frequency of these SSRs. A total of 7,315 SSRs were obtained from 

159,521 unigenes. Bioinformatics tools were employed to design appropriate primers. A total of 4,038 SSR loci had flanking 

sequences suitable for polymerase chain reaction primer design. One hundred SSR primers were validated and the rate of 

successful amplification was 78.0%. Fourteen randomly chosen primer pairs were amplified in Beibu Bay population (BP) and 

Hainan Baimajing population (HP). The number of alleles at each locus ranged from 2 to 3 in two populations, with mean 

values of 2.214 and 2.143, respectively. The observed heterozygosity, expected heterozygosity and polymorphism information 

content of BP were 0.463, 0.646 and 0.281, respectively, while those of HP were 0.309, 0.320 and 0.259, respectively. The 

developed SSR markers will be helpful for further studies on population genetics, genetic linkage construction and 

chromosome linkage mapping in the species. © 2017 Friends Science Publishers 
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Introduction 
 

Asian moon scallop Amusium pleuronectes (Linnaeus) is a 

traditional economic shellfish species in China, Philippines, 

Thailand and Australia (Minchin, 2003). However, catch 

production in the species has recently decreased because 

wild populations severely suffer from slow growth and mass 

mortalities. Over the last decades, the studies have been 

focused on spawning and larval rearing (Morton, 1980; 

Belda and Del Norte, 1988; Chaitanawisuti and Menasveta, 

1992), growth and reproduction (Del Norte, 1988), 

population ecology (Mcduff, 2001) and genetic diversity 

(Mahidol et al., 2007). Transcriptome sequencing in the 

species has recently been studied (Huang et al., 2015). 

Molecular markers are commonly applied to the 

studies on genetic mapping construction, molecular 

marker-assisted selection, chromosome linkage mapping 

and comparative genomics (Deng et al., 2014). SSR 

markers are preferred over RAPD and AFLP, due to their 

advantages that is involved in genetic co-dominance, 

abundant sequence dispersed throughout most eukaryotic 

genomes and high polymorphism (Wang et al., 2011). SSRs 

markers can be generated using several techniques without 

single locus isolation, such as employing oligonucleotide 

primers (Zietkiewicz et al., 1994), SAMPL (Witsenboer et 

al., 1997) and transcriptome SSRs (Guo et al., 2015). When 

compared with genomic SSRs, transcriptome SSRs are 

more efficient (Wang et al., 2009; Marguerat and Bähler, 

2010; Deng et al., 2014) with relatively higher 

transferability (Varshney et al., 2005). 

We constructed the mantle tissue transcriptome of A. 

pleuronectes using Illumina HiSeq 2000 paired-end 

sequencing technology in the previous studies (Huang et al., 

2015). Herein, we developed valuable SSR markers by 

mining EST sequences and evaluated genetic diversity of 

two populations of A. pleuronectes. The objectives of the 

present study were to (1) develop a large number of 

EST-SSRs; (2) test the amplification of a subset of primer 

pairs and search for polymorphic EST-SSR markers and (3) 

detect genetic diversity of wild populations. Results reported 

here will provide valuable resources for further studies on 

genetic diversity, genetic linkage and chromosome linkage 

mapping of A. pleuronectes. 

 

Materials and Methods 

 

Experimental Animals 

 

Thirty animals were separately sampled from Beibu Bay 

population (BP) and Hainan Baimajing population (HP). 
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Adductor muscle of each animal was sampled and 

preserved in 70% ethanol. 

Transcriptome data originated from the preliminary 

work (Huang et al., 2015). All unigenes were used for 

searching potential SSR markers using the MISA tool 

(http://pgrc.ipk-gatersleben.de/misa/). The minimum repeat 

motifs was dinucleotide and the maximum repeat motifs 

was penta-nucleotide. The primer pairs were designed using 

Perl scripts allowing the interaction with Primer3.0 (Rozen 

and Skaletsky, 2000). The presence of at least 50-bp 

sequence on both sides of the microsatellite repeats were 

considered sufficient for primer design by Primer 3.0, and 

were considered as the potentially amplifiable loci (Guo et 

al., 2015). 

 

DNA Isolation, SSR Amplification and Validation 

 

Genomic DNA was extracted from adductor muscle 

samples using Universal Genomic DNA Mini-Isolation Kit 

(Sangon Biotech Shanghai, China), according to the 

manufacturer’s protocol. Genomic DNA was assessed by 

gel electrophoresis using 1% agarose gel. A total of 100 

SSR primers were randomly picked and validated in the two 

populations. Fourteen SSR primers showing polymorphism 

in the two populations were used to evaluated genetic 

diversity. 

The PCRs reactions were performed in 10 μL of 

reaction mixture. The detailed reaction system and process 

were done according to Deng et al. (2014). The PCR 

products were separated on 8% (w/v) polyacrylamide gels 

using Takara 20 bp DNA ladder marker by silver staining. 

Following electrophoresis, gels were stained with silver and 

imaged using a Gel DocTM XR+ system. Genetic diversity 

values were calculated with the software GenAlEx 6.4 

(Peakall and Smouse, 2006). 

 

Results 
 

SSR Identification and Repeats Distribution 

 

We identified 7,315 potential EST-SSRs from 159,521 

unigenes. The unigene number of SSR-containing 

sequences was 7,025 and the number of sequences 

contained more than one SSRs was 820 (Table 1). A total of 

478 EST-SSRs were present in compound formation (Table 

1). On an average, every 14.6 kb unigenes contained one 

EST-SSR. The most abundant type of repeat motif was 

di-nucleotide (71.62%), followed by tri-nucleotide (23.96%), 

tera-nucleotide (4.31%) and penta-nucleotide (0.11%) 

(Table 1). We also calculated the EST-SSRs frequencies of 

different numbers of repeat unit. Among these SSRs, 43 

motif sequence types were identified (Fig. 1). Among these 

types, AT/AT (47.07%) was dominant, followed by AC/GT 

(16.50%), AG/CT (7.75%), ATC/ATG (6.29%), and 

AAT/ATT (4.24%). A total of 4,038 SSR primers were 

successfully designed using Primer3.0 (Table 2). 

SSR Amplification and Polymorphism Validation 

 

We randomly selected 100 SSR primers with optimal 

expected product sizes for validation in two populations to 

evaluate the successful amplification proportion and 

polymorphism of the potential SSR markers. Approximately 

78.0% of these pairs were successfully amplified in the 100 

SSR primers. Sixty five of the SSR loci showed 

polymorphisms. A representative profile for 1,152 locus is 

shown in Fig. 2. 

Table 1: Summary of expressed sequence tag-simple 

sequence repeat (EST-SSR) search results 

 
Total number of sequences examined 159,521 

Total size of examined sequences (bp) 106,655,673 

Total number of identified SSRs 7,315 
Number of SSR-containing sequences 7,025 

Number of sequences containing more than 1 SSR 820 

Number of SSRs present in compound formation 478 
Di-nucleotide 71.62 

Tri-nucleotide 23.96 

Tetra-nulecotide 4.31 
Penta-nucleotide 0.11 

 
Table 2: The numbers of SSR loci and the subset of these 

that are potentially amplifiable (containing suitable PCR 

priming sites) in 159,521unigenes using RNA-Seq 

 
Repeat motifs Number of 

repeats 

Number of 

loci identified 

Number of 

loci designed 

Percentage 

(%) 

Di-nucleotide 5-12 5,240 2,956 56.41 
Tri-nucleotide 5-19 1,753 995 56.76 
Tetra-nulecotide 5-19 315 85 26.98 
Penta-nucleotide 5-9 7 2 28.57 
Total - 7,315 4,038 55.21 

 

 
 
Fig. 1: Number of SSR loci and the subset of these 

designed primers with Primer3.0. A part of tetranulecotide 

repeats are listed 
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Genetic Diversity Analysis of Two Populations 

 

Genetic diversity of the two populations was evaluated by 

14 SSR primers (Table 3). The results showed that the 

number of allele at each locus ranged from 2 to 3. There 

existed evident differences in genetic diversity between 

the two populations. The observed heterozygosity, 

expected heterozygosity and polymorphism information 

content of BP were 0.463, 0.646 and 0.281, respectively, 

while those of HP were 0.309, 0.320 and 0.259, 

respectively (Table 4). 

 

Discussion 
 

A. pleuronectes is precious seafood because of its large size, 

rapid growth, well-developed adductor muscle and delicious 

taste (Fu et al., 2012). It also was a functional 

hermaphrodite that probably promotes its selfing and 

profoundly influences the mode of population genetic 

structure (Llana and Aprieto, 1980). It is now widely 

recognized that a large number of molecular markers 

achieved through molecular genetic techniques are used to 

evaluate the genetic variability and population structure 

(Mahidol et al., 2007). These molecular markers include 

sequence-related amplified polymorphism (Zhang and He, 

2009), SSR (Tong et al., 2007; Shi et al., 2013), inter-SSR 

(Jiang et al., 2007), and amplified fragment-length 

polymorphism (Yu and Chu, 2006; Shi et al., 2009). The 

SSRs are widely and abundantly dispersed in most nuclear 

eukaryotic genomes. In our studies, we screened a batch of 

SSR markers from A. pleuronectes transcripts. A total of 

7,315 potential EST-SSRs in 159,521 unigenes were 

obtained, which accounted for 4.59% (Table 1). The 

frequency of SSRs detected in this study was higher than 

1.53% in pearl oyster P. maxima (Deng et al., 2014) and 

3.10% in hard clam Meretrix meretrix (Li et al., 2011), but 

lower than 10.22% in clam Paphia textile (Chen et al., 2016) 

and 4.7% in pearl oyster P. martensii (Guo et al., 2015). A 

possible explanation for the case might be the differences in 

SSR search tools and criteria used. Hence the large number 

of EST-SSRs obtained from A. pleuronectes transcriptome 

will be useful for population genetics analysis and linkage 

mapping construction. 

The distribution and frequency of the EST-SSRs were 

calculated. Among these EST-SSRs, di-nucleotide repeat 

motifs were the most frequent repeat type, followed by 

tri-nucleotide, tetra-nucleotide and penta-nucleotide (Table 

1). The repeat motifs were evidently different from those 

reported in other shellfish mentioned above. We speculated 

that the difference of SSR frequency among the different 

species were due to the following reasons: (1) difference of 

the genome structure or composition; (2) different parameter 

settings can also dramatically cause the results and (3) 

selection of different softwares in detecting SSRs. The most 

common di- and tri-nucleotide repeats were the motif (AT)n 

(24.81%) and (GAT)n (1.63%) in the EST-SSRs (Fig. 1). 

However, the lowest di-nucleotide repeats were the motif 

(CG)n (0.14%) and (GC)n (0.16%), which is in accordance 

with many organism genomes, such as Chinese shrimp 

Fenneropenaeus chinensis (Kong and Gao, 2005) and 

Japanese Pufferfish Fugu rubripes (Edwards et al.,1998). 

To determine the polymorphism of the selected SSR 

markers, we validated 100 primers in two wild populations. 

Among the 100 pair primers randomly selected for PCR 

validation, 78 primers produced clear bands. The PCR 

success rate (78.0%) was higher than those obtained in other 

shellfish species. For example, the success rates of were 

65.0% in clam M. meretrix (Li et al., 2011), 50.0% in clam 

Mercenaria mercenaria was 65.0% (Wang et al., 2010) and 

36.0% in freshwater mussel Villosa lienosa (Wang et al., 

2015). These results showed that the screening EST-SSRs 

can be used for the subsequent genetic diversity research. 

The genetic diversity of species reflects its ability 

to adapt to the environment. The more abundant the 

variation within species is, the greater the ability it has 

to adapt to the environment (Beardmore et al., 1997). 

Table 3: Primer sequence and amplification information of 

14 SSR loci 
 

Locus Primer Sequence(5’-3’) Annealing 

temperature (oC) 

1152 F: CCT CCC TTT GTTGCA TTC TC 
R: CTGGAA AGGTTC CCT CAC TG 

53.8 

46806 F: AACATTTTCGGAGGTTGAACA 

R: GTTTGTAAGGGGTGAGCCAA 

50.8 

22332 F: GTCACG TGGGCATAACCTTT 

R: GTCGTTTGTACCGCTAAGCC 

53.8 

47806 F: ATG AAA AAGCACGGG TTC TG 
R: ATTGGTAAGCGAGATGCCAC 

51.9 

50232 F:ACATTCACGGGTACGCTGTT 
R:TTC TCTCTCCGAGGAAGCAC 

53.8 

65095 F:TCACCAACATCGGTAAGGCT 

R:GAGCTCGTGTTCCTTAATGTGA 

53.1 

66493 F:ATC ATGATCTCCTGC CCAAC 

R:CCTTCACATCTG ACT TGGCA 

52.8 

68197 F:GAC AAG CAGCTATGA ACCTGG 

R:GAGCCA ACA ATA ACGGGGAA 

52.9 

70996 F:GCT TGG GTA CAA CAAAACCAA 

R:ACACAG CGT GTG TTA GCCTG 

52.9 

79101 F:GGAAAT TCCAAC CGC AATAA 

R:CAAGGTCGTTCATTT AATTCACA 

49.4 

96160 F:AACAGGGGCAGT GTG AAATC 
R:CCTTCCAGGCTGGTACAG AA 

53.8 

97508 F:CAATGCAGAACT GTGAAGGG 

R:ACA TGACCTTGACCTTTGCC 

52.8 

98592 F:AAA ATTCCCCTTTAGCTCCG 

R:TGC TTTTTGTTTGTT TCTTTGTG 

49.4 

130155 F:GAA CCGATATTTGGACCCCT 
R:GTG TAA AAGGCTGCT TTTCC 

52.9 

 
 

 

 
 

                    3            5                                                 3          5      
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    p 
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    p 

 
 

Fig. 2: Amplified profile at 1152 locus in BP (1-8) and HP 

(9-16) of A. pleuronectes 
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The evaluation index of genetic diversity includes expected 

heterozygosity (He), observed heterozygosity (Ho) and 

polymorphic information content (PIC). There are a large 

number of reports about the analysis of the genetic 

structures of shellfish species by using SSR molecular 

markers (e.g., Li et al., 2007; Liu et al., 2014). However, 

there existed few studies on A. pleuronectes by using SSR 

molecular marker. In the present studies, the average Ho, He 

and PIC of BP were 0.463, 0.646 and 0.281, respectively. 

The average Ho, He and PIC of HP were 0.283, 0.299 and 

0.259, respectively (Table 4). The results indicated that BP 

has higher genetic diversity than HP. 

 

Conclusion 
 

Our results showed that 14 loci had moderate polymorphism 

(0.25<PIC<0.5) in the two populations. These molecular 

tags can be regarded as effective genetic markers using 

genetic diversity analysis of A. pleuronectes. This is a first 

attempt to analyze the genetic diversity of Asian moon 

scallop populations. The developed markers may be 

valuable for the studies on genetic resource conservation of 

the species. 
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