INTERNATIONAL JOURNAL OF AGRICULTURE & BIOLOGY ISSN Print: 1560–8530; ISSN Online: 1814–9596 17F–158/2018/20–4–939–944 DOI: 10.17957/IJAB/15.0636 http://www.fspublishers.org

Full Length Article

Transcriptome Sequencing Reveals Genes Involved in Petal Spot Formation of Asiatic Hybrid Lily Cultivar 'Easy Dance'

Xiangfeng He^{1,2}, Shufa Xu³, Pingsheng Leng¹ and Wenhe Wang^{1*}

¹College of Landscape Architecture, Beijing University of Agriculture, Beijing 102206, China

²Beijing Collaborative Innovation Center for Eco-Environmental Improvement with Forestry and Fruit Trees, Beijing 102206, China

³Key Laboratory of Pollinating Insect Biology, Ministry of Agriculture, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing 100093, China

*For correspondence: wwhals@163.com

Abstract

Petal spot is an important characteristic for ornamental flowers. However, fewer studies have been done to uncover the molecular formation mechanism of petal spot in *Lilium* sp. In our research transcriptome sequencing of Asiatic hybrid lily 'Easy Dance' flower with large brown spot was performed. Transcriptome of brown-pigmented interior tissue of spot region (SP) was compared with un-pigmented exterior tissue of spot region (SNP) and no spot region (NS) of flower to identify structural genes and regulatory genes involved in brown spot formation. The results revealed that 11,544 unigenes exhibited significantly differential expression between NS and SP, and 12,636 unigenes between SNP and SP. Functional enrichment analysis of differential expressed genes revealed several pathways possibly involved in spot formation in *Lilium*. Some of unigenes annotated as *CHS*, *PAL*, *C4H*, *F3'H*, *F3'5'H*, *F3H*, *FLS*, *DFR* and *3GT* indicated higher expression in SP compared with NS and SNP. All expressions of carotenoid biosynthesis genes were down-regulated in spot. In addition, six transcription factors annotated as bHLH, R2R3-MYB or WD40, which regulated anthocyanin biosynthesis in spot, were identified by transcriptome sequencing and phylogenetic analysis. Our research will help to deepen the understanding of formation mechanism of petal spot in *Lilium*. © 2018 Friends Science Publishers

Keywords: Lilium sp.; Spots; Anthocyanin biosynthesis; bHLH; R2R3-MYB

Introduction

With the improvement of the living standards in recent years, peoples' demands for ornamental flowers are changing from yield to quality (Zhao *et al.*, 2014). Pigment spots or stripes belong to the pigmentation patterning of flower that is one of key characteristic for ornamental flowers and determines their commercial value. Ornamental plants with novel pigmentation patterning have become attractive breeding targets for some flower breeders. Thus, the mechanism of pigmentation pattern formation has attracted the attention of numerous plant biologists and breeders (Yamagishi *et al.*, 2014).

Asiatic hybrid lilies depict a variety of colors, derived from interspecific crosses of section Sinomartagon of the family Liliaceae, are famous ornamental flowers (Lim and van Tuyl, 2006). The large variations in Asiatic hybrid lilies flower colors come from the accumulation of anthocyanins and carotenoids. The yellow and orange pigmented petals are caused by carotenoids, chocolate brown and pink by anthocyanins, and red pigmented by the mixture of carotenoids and anthocyanins (Yamagishi *et al.*, 2014). Flowers of Asiatic hybrid lily cultivars have different pigmentation patterns except a lot of variation in colors (Yamagishi, 2013). Dark red or red spots often arise in the internal surfaces of petals in Asiatic hybrid cultivars (Abe et al., 2002). Previous researches indicated that the major pigments in petal spots are anthocyanins in many flowering plant species (Cooley and Willis, 2009). The chemical structure of anthocyanin has been well researched, and several genes in anthocyanin biosynthesis have been identified (Winkel-Shirley, 2001). The transcription of anthocyanin biosynthetic genes is regulated by the interactions among basic-helix-loop-helix (bHLH), R2R3-MYB transcription factors and WD40 proteins (Koes et al., 2005). However, the biosynthesis and regulation of anthocyanin related to petal spot have seldom been investigated in lily. Only two transcription factors, LhMYB6 and LhMYB12-Lat, regulating spot development in lily petal have been reported (Yamagishi et al., 2010; Yamagishi et al., 2014). Therefore, a more comprehensive research on biosynthesis genes and regulatory factors of pigment spot is important to better understand the mechanism on petal spot formation in Lilium sp.

To cite this paper: He, X., S. Xu, P. Leng and W. Wang, 2018. Transcriptome sequencing reveals genes involved in petal spot formation of asiatic hybrid lily cultivar 'Easy Dance'. *Int. J. Agric. Biol.*, 20: 939–944

To uncover the mechanisms involved in spots formation in Asiatic hybrid lilies, three transcriptomes of the brown-pigmented and unpigmented tissue of spot region, and no spot region of Asiatic hybrid lily 'Easy Dance' flower were sequenced and analyzed. Some genes with different expression patterns in three samples were obtained, and some structural and regulatory genes involved in spot formation were identified.

Materials and Methods

Plant Materials

Asiatic hybrid lily cultivar 'Easy Dance' was planted in the greenhouse of Beijing University of Agriculture. This cultivar has brown spot in the interior surfaces of yellow petal. Therefore, the brown-pigmented interior (SP) and unpigmented exterior (SNP) tissues of spot region and no spot region (NS) of flower were sampled for future analysis.

RNA Isolation

The TRIzol® reagent was used for total RNA extraction of three samples. Agilent 2100 Bioanalyzer and 1% agarose gel electrophoresis were used to detect the integrity of total RNA. After treated with DNase I kit, the mRNA was isolated from the total RNA using magnetic beads with Oligo (dT).

cDNA Library Construction and Transcriptome Sequencing

The fragmentation buffer was used to break mRNA into short fragments. The mRNA fragments were used for cDNA synthesis. The Qia-Quick PCR extraction kit was used to purify the cDNA fragments. A single nucleotide A (adenine) was added to the 3' end of cDNA fragments and then the sequencing adaptor were ligated to them. PCR was used to amplify and enrich the suitable fragments. The Agilent 2100 Bioanalyzer was used to validate the sample libraries. Illumina HiSeqTM 2500 sequencing platform in the Beijing Genomics Institute (BGI) was used to sequence cDNA libraries.

De novo Assembly

Clean reads were obtained by removing empty reads, adaptor, repeated and low-quality reads, and were used for subsequent analysis. High-quality reads was used for *de novo* assembly using the Trinity software (Grabherr *et al.*, 2011). The unigenes were aligned to seven public protein and gene databases by Blast X according to method of Zhang *et al.* (2015a). After unaligned to any of the above databases, the direction of a unigene was decided by the ESTScan software (Iseli *et al.*, 1999).

Unigene Annotation and Analysis

The Blast2GO was used to retrieve associated Gene Ontology (GO) terms of unigenes by the NR annotations (Conesa *et al.*, 2005). WEGO software was used for GO functional classification (Ye *et al.*, 2006). The complex biological behavior was studied using KEGG database and the pathway of unigene was annotated.

Unigene Expression Difference Analysis

FPKM method was used to measure the transcription abundance of unigene (Mortazavi *et al.*, 2008). In this analysis, unigene expression difference was defined according to Benjamini and Yekutieli method (2001). GO functional enrichment analysis and KEGG pathway analysis were done for difference expression unigenes.

Phylogenetic Analysis

Protein sequences of anthocyanin-related R2R3-MYB and bHLH transcription factors were collected from other plant species according to the Yuan *et al.* (2014) publication. These sequences and R2R3-MYB and bHLH transcription factors in 'Easy Dance' were aligned using ClustaIW. Phylogenetic trees of transcription factors were constructed using MEGA 5 software by the neighbor-joining method with bootstrap analysis of 1000 replicates (Tamura *et al.*, 2011).

Results

Transcriptome Sequencing, *de novo* Assembly and Function Annotation

In order to elucidate the mechanism of spot formation in lily petal, three cDNA libraries generated from brownpigmented interior tissue of spot region (SP), un-pigmented exterior tissue of spot region (SNP) and no spot region (NS) of the petal of Asiatic hybrid lily 'Easy dance' were sequenced. We obtained 73.85 Gb raw reads from every library. The O20 percentage for three libraries was over 97.65% and the GC percentage ranged from 48.78 to 49.83%. Short reads from NS, SNP and SP were assembled into 61777, 73576 and 67814 contigs. All these contigs were linked, and then produced 41269, 48831 and 45015 unigenes whose average lengths were 788, 744 and 775 nt for NS, SNP and SP. The N50 of unigenes for NS, SNP and SP were 1496, 1441 and 1511, respectively. After removing the redundancy of unigene sequences, 60631 non-redundant unigenes were obtained. A total of 37529 non-redundant unigenes were annotated. Most of unigenes were annotated to Nr (35498, 58.55%), Nt (26460, 43.64%), Swissprot (26010, 42.90%) and Interpro (25495, 42.05%) databases.

Predicted		Nun	iber o	I Up-i	regula	ted ir	ı Up	regu	lated	l Un	igen	e ID																												
function		gene	s	SP																																				
Anthocyar	nin bi	iosyn	thetic	pathw	ay				-					-			_																							
PAL		3		3			CL	8073	.Cor	tigl	_All	; CL	2500.	Con	tig2	_All	; CL	_250)0.C	ont	igl_	All																		
CHH CHS		3		3			CI	gene	432i	5_AI	11; C.	L330 11	8.C0	nugi	_AI	r; c	LSO	08.0	Loni	1g2	_AII																			
CHS E2H		4		2			CL	1803	.Cor	ing I ti a 1	0_A 11		5507	Con	tia1	A 11																								
гэп 52°U		2		6			CL	1223 2050	.Cor	tig1	AII	; CL	3307.	2202	ugi.	_AII	Inio		211	51	A 11.	CI	200	18 C	ont	ia1	A 11	I. T.I.		~4(072	A 11	· 11-		·•14	5104	5 1	11		
F2 11		0		1			CL	າດດຈ	Cor	ugo. tia1	AII	, Ull	gene	3302	.4_P	м, ч	Jing	gene	211	51_	AII,	CL	29;	90.C	Join	1g4_	_Au	, 01	ngei	1040	572_	All	, 01	ngei	ICT.	510.)_A	п		
гээп		1		1			Un	2990	210	ingr	_AII	YI 55	07.0	ontic		11. (71.54	507	Cor	tia	1 1	11. т	Ini	~~~~~	67	21	A 11.	I Ini	aana	102	257	A 11								
DEP		2		1			Un	gene	178	52_F	\11, \ \11		07.C	Jini	;2_r	ш, ч	_LJ.	507.	.coi	ing	1_A	п, с	JII	gene	.07.	51_1	<u>л</u> п,	Um	gene	10.	552_									
3GT		3		1			CL	527 i	onti	ດ2 /	Δ11																													
CHI		3		0			CL	527.	Jointi	54_1	m																													
ANS		4		Ő																																				
Carotenoio	d bio	svntl	etic n	athwa	v																																			
PSY	u 010	1	pune p	1	,		Un	gene	156	47 A	11																													
PDS		1		1			CL	3926	.Cor	tig2	All																													
ZDS		17		17			Un	gene	173	47 A	All: (CL47	60.C	onti	23 A	A11:	CL4	1372	2.Co	ntis	22 A	A11:	CL	.569	93.C	Cont	ig2	All	CL	569	93.C	onti	g1	All:	CI	.350)5.0	lont	ig2 /	A11:
							CL	7928	.Cor	tig1	All	:U	nigen	e816	57 A	All:	CL	335	1.C	onti	g1 .	All:	C	L35	505.	.Coi	ntig	1 A	11: (CL	2217	.Co	ntig	7 A	.11:	Un	iger	ae6∕	415 A	All:
							CL	163.	Cont	ig4		CL2	217.0	onti	g3 .	All;	CL2	2217	7.Co	ntig	26 A	A11; (CL	392	6.C	onti	g2	All;	ĆL3	335	1.Cc	ontig	23 1	A11	,		0			,
CRTISO		3		3			CL	5739	.Cor	tig1	All	CL	6739.	Con	tig2	All	; CL	.306	54.C	ont	ig1	All	l				0 -	. ,												
LCYB		1		1			Un	gene	880	1_AI	11	·			0.	_	<i></i>				0 -	-																		
CruA		1		1			Un	gene	910	1_A1	11																													
LCYE		1		1			Un	gene	174	97_A	A11																													
CCS		1		2			Un	gene	880	4_A1	ll;Ur	igen	e920	L_A	1																									
VDE		1		1			Un	gene	862	All																														
Transcript	ion fa	actor	s fami	ilies																																				
bHLH		32		8			Un	gene	193)6_A	All;	Unig	enel	4748	Al	l; C	CL64	471.	Con	tig2	2_A	ll; (CL:	3737	7.C	onti	g1	All;	CL	704	4.C	onti	g2_	All;	CI	_314	48.C	onti	ig3_A	All;
R2R3-MY	/B	5		2			CL	gene 7202	Cor	54_₽ 1tiσ1	AII; C A 11	· Uni	7.C0	nug/ 2378	2 A	11																								
WD-renea	at .	4		4			CL	4790	Cor	ntio1		· CL	4790	Con	tio2	A11	· CI	479	90 C	ont	io3	A11	·Uı	niger	ne2	624	Al	1												
protein40				·			02	.,,,,				, 02	.,,,0.	0011			, 02				.80-		,					•												
•																																								
•	800																																							
•	800	1																																						
÷	800]				1	ÿ																							I						NS V	/S SI	,		
·	800						0										I												[NS V SNP	VS SI VS S	P		
	800		L			Γ	0										Г																		•	NS V SNP	VS SF VS S) P		
	800 600						8																		-										•	NS V SNP	/S SF VS S) P		
TICS	800 600		ſ				0																		Г										•	NS V SNP	VS SF	р ЪР		
of genes	800						0							Г											Γ											NS V SNP	VS SI VS S	šP		
ber of genes	800 600 400													Г								-													•	NS V SNP	VS SF	s P		
dumber of genes	800 600 400						8							Γ																					•	NS V SNP	VS SI VS S	s P		
Number of genes	800 600 400						2																												•	NS V SNP	VS SE VS S	у ЗР		
Number of ganes	800 600 400						0																												•	NS V SNP	VS SE	;P		
Number of genes	800 600 400 200						0								Γ											ſ	ſ								•	NS V SNP	VS SE	;P		
Number of genes	800 600 400 200						2									2				Γ		г					[•	NS V SNP	VS SF	;P		
Number of genes	800 600 400 200			r	[ſ										_		Г													-	NS V SNP	VS SE	;P		
Number of genes	800 600 400 200						n	1			-		[[Ì												-			•	NS V SNP	VS SE	, sp		
Number of ganes	800 600 400 200	tion	tests	cess the second s	cess	tion tecess	Cess	COSS CONSTITUTION	coss	coss	tion	ulus	ccss		cell	tion	part	atrix	part					coid	dele	part	Mast	vity 3	ding	vity	vity -		viv.	t Alia	vity	NS V SNP	VS SE VS S	wity 📕	vity	
Number of genes	800 600 400 200 0	gulation	agenesis process	process provers	process	alization	process	process	process	mocess	oduction	process stimulus	process	agnaling	cell	junction	cell part	r matrix	this part	ur region	complexes	and and		undeoid	reanele	elle part	symplast	activity	binding	adivity	activity	activity addition	activity activity	activity	adivity	NS V SNP	VS SE VS S	adivity	activity	
Number of genes	800 600 400 200 0	al regulation	or biogenesis	and process revealed in the second seco	stem process	localization odic process	nism process	strait process	gical process	gical process	reproduction	e to stimulus	mic process	signaling	cell	cell junction	cell part	llular matrix	r matrix part	diular region	liar complex			nuccontinuent	organelle	rganelle part	symplast	dant activity	binding	lytic activity	rrier activity	lator activity	tures activity	uctor activity	voir activity	ndor activity	ptor activity	colle activity	ofter activity	
Number of genes	800 600 400 200 0	ogical regulation	ion or biogenesis cellular process	pmental process rewrite a	e system process	localization localization	xganism process	ganismal process	iological process	iological process	reproduction	outure process	thythmic process	signaling	cell	cell junction	cell part	racellular matrix	llular matrix part	racelular region	A coular complex	membrane part		retruction united in the second s	oreandle	organdle part	symplast	ioxident activity	binding	catalytic activity	n carrier activity	regulator activity	Be ration activity machicar activity	on factor activity	eservoir adivity	on factor activity	receptor activity	nolecule activity	insporter activity	
Number of genes	800 600 400 200 0	biological regulation	ization or biogenesis cellular process	evelopmental process	mune system process	localization metabolic process	iti-organism process	r organismal process	of biological process	of biological process	reproduction	repondere process	rhythmic process	agnaling	cell	cell junction	cell part	extracellular matrix	racelular matrix part	extracelular region	romotecular complex			nanc-enclosed numeri nucleoid	oreandle	organelle part	symplast	antioxidant activity	binding	catalytic activity	ectron carrier activity	me regulator activity	are transchicer activity	iption factor activity	ent reservoir adivity	ription factor activity	receptor activity	ral molecule activity	transporter activity	
Number of games	800 600 400 200 0	biological regulation	rganization or biogenesis cellular process	developmental process	immune system process	localization metabolic process	multi-organism process	full ar organismal process	tion of biological process	tion of biological process	reproduction	repounding process	rhythmic process	sgnaling	cell	cell junction	cell part	extracellular matrix	extracellular matrix part	extracel utar region	macromotecular comprets			norme-enclosed initial mudeoid	oreancie	organelle part	symplast	antioxidant activity	binding	catalytic activity	electron carrier activity	arzyme regulator activity exchange forder activity	e exclange ractor activity	inscription factor activity	nutrient reservoir activity	anscription factor activity	receptor activity	uctural molecule activity	transpoter activity	
Number of genes	800 600 400 200 0	biological regulation	att organization or biogenesis cellular process	developmental process	immune system process	localization metabolic process	multi-organism process	licellular organismal process	gulation of biological process	gulation of biological process	reproduction	repounding process	rhythmic process	sgnaling	cell	cell junction	cell part	extracellular matrix	extracellular matrix part	extracellular region	macromotecular complex			manorane-enviced multi-	oreandle	organelle part	symptas	antioxidant activity	binding	catalytic activity	electron carrier activity	duzyme regulator activity	ouce excitance activity molecular transficer activity	g transcription factor activity	nutrient reservoir activity	g transcription factor activity	receptor activity	structural molecule activity	transporter activity	
Number of genes	800 600 400 200 0	biological regulation	portent organization or biogenesis cellular process	developmental process growth	immune system process	localization metabolic process	multi-organism process	multicellular organismal process	e regulation of biological process	regulation of biological process	reproduction	response to stimulus	rhythmic process	sgnating sinole-revarism records	cell	cell junction	cell part	extracellular matrix	extracellular matrix part	extracelular region	macromolecular complex	membrane part		interiorance enclosed numer	oreandle	organelle part	symplast	antioxidant activity	binding	catalytic activity	electron carrier activity	enzyme regulator activity relactive evolutions for the activity	uncourse contange ractor activity molecular transducer activity	nding transcription factor activity	nutrient reservoir activity	nding transcription factor activity	receptor activity	structural molecule activity	transporter activity	
Number of genes	800 600 400 200 0	biological regulation	component organization or biogenesis cellular process	developmental process growth	immune system process	localization intabolic process	multi-organism process	multicellular organismal process	sitive regulation of biological process	regulation of biological process	reproduction	response to stimulus	rhythmic process	signaling	cell	cell junction	cell part	extracellular matrix	extracellular matrix part	extracelular region	macromol coular complex			number of the second se	oreande	organelle part	sahdniss	antioxidant activity	binding	catalytic activity	electron carrier activity	chryme regulator activity	yr-mucouve examine ration activity and the second activity and second activity and second activity and second activity a	id binding transcription factor activity	nutrient reservoir activity	in binding transcription factor activity	receptor activity	structural molecule activity	transporter adivity	
Number of genes	800 600 400 200 0	Mological regulation	ular component organization or biogenesis cellular process	developmental process	immune system process	localization metabolic process	multi-organism process	multicellular organismal process	positive regulation of biological process	regulation of biological process	reproduction	response to stimulus	rhythmic process	sinde-aromican records	cell	cell junction	cell part	extracellular matrix	extracellular matrix part	extracellular region	macromotecular complex			interiorate-entrosectrument	oreandle	organetic part	symplast	antioxidant activity	binding	catalytic activity	electron carrier activity	enzyme regulator activity	guary r-morecure excitance activity	c acid binding transcription factor activity	nutrient reservoir activity	workin binding transcription factor activity	receptor activity	structural molecule activity	transporter adivity	
Number of genes	800 600 400 200 0	bi ological regulation	cellular component organization or biogenesis cellular process	developmental process growth	immune system process	localization metabolic process	multi-organism process	multicellular organismal process menative resultation of hid original process	positive regulation of biological process	regulation of biological process	reproduction	response to stimulus	rhythmic process	sinde-remism records	cell	cell junction	cell part	extracellular matrix	extracellular matrix part	extracelular region	macromotecular complex			interior and control on the control of the control	oreanele	organetic part	symplast	antioxidant activity	binding	catalytic activity	electron carrier activity	enzyme regulator activity	guary renoteen extension activity molecular transferer activity	udeic acid binding transcription factor activity	nutrient reservoir activity	protein binding transcription factor activity	receptor activity	structural molecule activity	transpoter adivity	
Number of genes	800 600 400 200 0	biological regulation	cellular component organization or biogenesis cellular process	developmental process	immune system process	localization metabolic process	multi-organism process	multicellular organismal process	positive regulation of biological process	regulation of biological process	reproduction	response to stimulus	rhythmic process	grinde-revealers	cell	cell junction	cell part	extracellular matrix	extracellular matrix part		macronot coupt cx					organelle part	symplast	antioxidant activity	binding	catalytic activity	electron carrier activity	enzyme eguator activity memod anteleotide eveluance factor activity	guary-motecome extension activity molecular transducer activity	mudeic acid binding transcription factor activity	nutrient reservoir activity	protein binding transcription factor activity	receptor activity	structural molecule activity	transporter activity	

Fig. 1: Go classification of DEGs from NS-VS-SP and SNP-VS-SP

Differentially Expressed Unigenes Analysis

To identify key genes involved in spot formation, the transcriptome from SP was compared with those from SNP and NS. Total of 11544 and 12636 differentially expressed genes (DEGs) were obtained from NS-VS-SP and SNP-VS-SP, respectively (Table 1). By GO analysis, 1316 DEGs

from NS-VS-SP and 1482 DEGs from SNP-VS-SP could be classified into 46 groups which belong to three categories (Fig. 1). In 'biological process', the major classifications were 'metabolic process' and 'cellular process'. In 'cellular component', cell, cell part and organelle accounted for the major proportion. The most frequent 'molecular function' terms were 'catalytic activity' and 'binding'. Using KEGG

Fig. 2: KEGG pathway of DEGs from NS-VS-SP and SNP-VS-SP

analysis, 6269 DEGs (54.3%) from NS-VS-SP and 6860 DEGs (54.3%) from SNP-VS-SP were mapped to 126 KEGG pathways of 20 KEGG classes (Fig. 2). The largest class was 'global map', followed by 'lipid metabolism' and 'carbohydate metabolism'. Several KEGG pathways related to pigmentation development, including 'anthocyanin biosynthesis', 'flavonoid biosynthesis', 'isoflavonoid biosynthesis', 'flavone and flavonol biosynthesis' and 'carotenoid biosynthesis', were identified from classes of 'Metabolism of terpenoids and polyketides' and 'Biosynthesis of other secondary metabolites'.

Analysis of Candidate DEGs Related to Spots Formation

As previous reports, the major pigments in petal spots for many plant species are anthocyanins (Cooley and Willis, 2009). According to the KEGG analysis, 23 up-regulated unigenes related to anthocyanin biosynthetic pathway were probably involved in pigment development in petal spots (Table 1). Among them, unigenes annotated as *PAL*, *C4H*, *CHI*, *CHS*, *F3H*, *FLS*, *F3'H*, *ANS* and *DFR* have been reported in *Lilium* (Lai *et al.*, 2012). However, *F3'5'H* (CL2998.Contig1_All) and *3GT* (CL627.contig2_All) were firstly identified from *Lilium*. Some of unigenes annotated as *PAL*, *CHS*, *C4H*, *F3'H*, *F3H*, *F3'5'H*, *DFR*, *FLS* and *3GT* have high expression in SP compared with SNP and NS.

The carotenoid pathway produces yellow and orange and pink lily flowers (Yamagishi *et al.*, 2014). The petal region without spot in Asiatic hybrid 'Easy dance' was yellow. Therefore, the DEGs involved in carotenoid biosynthetic pathway were analyzed. We found that all DEGs annotated as *PDS*, *PSY*, *CRTISO*, *ZDS*, *LCYB*, *CruA*, *LCYE*, *CCS* and *VDE* had down-regulated expressions in SP (Table 1).

The anthocyanin biosynthesis genes in higher plants could be regulated by transcriptional factors, including R2R3-MYB, bHLH and WD40 classes (Xu *et al.*, 2015). In this study, 41 transcriptional products were identified as three transcription factor families, including 5 R2R3-MYBs, 32 bHLHs and 4 WD40s (Table 1). In these transcription factors, 2 R2R3-MYBs, 8 bHLHs and 4 WD40s were highly expressed in SP compared with SNP and NS.

Phylogenetic Analysis of Transcription Factors

In order to study transcription factors involved in regulation of anthocyanin biosynthesis in spot, 2 R2R3-MYBs and 8 bHLHs up-regulated in the spot of 'Easy dance' were used for phylogenetic analysis. The results showed that Unigene19306_All identified as a bHLH transcriptional factor was grouped with LhbHLH1 (Fig. 3). In the dendrogram of R2R3-MYB transcriptional factors, CL7202.Contig1_All was in the same cluster as plant anthocyanin-promoting R2R3-MYBs, including LhMYB12, LhMYB6 and LrMYB15 (Fig. 4).

Discussion

Lily with variable flower colors and shapes, and pleasant fragrances is popular ornamental plant worldwide. It can be used as fresh-cut flower and for garden decoration because

Fig. 3: Phylogenetic tree of bHLH transcription factors involved in the regulation of the flavonoid pathway from a range of species

The sequences of Asiatic hybrid cultivar 'Easy Dance' are highlighted in dot. Sequences of other plants were retrieved from Genbanks according to Yuan (2014) publication

of high ornamental value. However, the study on molecular mechanism of Lilium sp. was limited for their large genome (~36 Gb). High-throughput transcriptome sequencing is an efficient method for study on plant without genome information. In several researches, transcriptome sequencing has been used to estimate genetic divergence (Shahin et al., 2014), and identify genes involved in the flavonoid (Zhang et al., 2015b), carbohydrate biosynthesis metabolism (Li et al., 2014), cold response (Wang et al., 2014) and vernalization (Huang et al., 2014) in Lilium sp. In our study, genes involved in spot development were identified from Lilium sp. using high-throughput transcriptome sequencing. About 73 Gb total raw reads were obtained from each library of SP, SNP and NS. And total of 11,544 and 12,636 DEGs were obtained from SP compared with NS and SNP, respectively. All these results in this study could provide a large amount of information for uncovering molecular mechanism of Lilium sp.

Petal spots are important characteristics for ornamental flowers and affect their value. However, there are very few researches about the molecular mechanism of spot formation. It has been reported that the main pigment in petal spots was anthocyanins (Zhang *et al.*, 2015b). Their

Fig. 4: Phylogenetic tree of R2R3-MYB transcription factors involved in the regulation of the flavonoid pathway from a range of species

The sequences of Asiatic hybrid cultivar 'Easy Dance' are highlighted in dot. Sequences of other plants were retrieved from Genbanks according to Yuan (2014) publication

biosynthesis are controlled by some well-characterized structure genes, including CHS, F3'5'H, F3'H, ANS and DFR (Li et al., 2014). In our research, the results from transcriptome sequencing showed that expressions of PAL, CHS, C4H, F3'H, F3H, FLS, F3'5'H, DFR, and 3GT were raised in petal spot. We still found that all of unigenes related to carotenoid biosynthesis pathway have lower expression in pigmented spot region. Therefore, we speculate that the low expression of genes involved in carotenoid biosynthesis was necessary for brown spot formation.

The transcriptions of key anthocyanin biosynthesis genes are mainly regulated by the interactions among bHLH, R2R3-MYB and WD40 transcription factors (Koes et al., 2005). R2R3-MYB transcription factor has been reported to regulate spot formation, such as LhMYB21-Lat and LhMYB6 from Lilium (Yamagishi et al., 2010; Yamagishi et al., 2014), NEGAN from monkey flowers (Yuan et al., 2014) and PeMYB11 from Orchidaceae (Hsu et al., 2015). In this study, 14 bHLH, R2R3-MYB and WD40 transcription factors up-regulated in petal spot were identified. They are likely to participate in the regulation of spot formation in Lilium by regulating expressions of anthocyanin biosynthesis genes. The results from phylogenetic analysis showed that Unigene19306 All and CL7202.Contig1 All annotated as R2R3-MYB and bHLH transcription factors are the main anthocyanin-promoting protein that determines the distribution of anthocyanin pigments in Asiatic hybrid lily spot.

Conclusion

The expressions of nine structural genes in anthocyanin biosynthetic pathway are the main contributors to the pigmentation of petal spot of Asiatic hybrid lily 'Easy Dance'. Six transcription factors annotated as bHLH, R2R3-MYB and WD40 regulated anthocyanin biosynthetic pathway are involved in spot formation of 'Easy Dance'. The decline in the expression of carotenoid biosynthesis gene is necessary to brown spot formation of Asiatic hybrid lily cultivar 'Easy Dance'. These results will further our knowledge about formation mechanism of petal spot in *Lilium*.

Acknowledgements

This work was supported by the DaBeiNong Young Teachers' Scientific Research Fund Project (14ZK005), High-level Scientific Research Cultivation Project of BUA (GJB2015004), Building Project of Beijing Laboratory of Urban and Rural Ecological Environment (PXM2015-014207-000014)

References

- Abe, H., M. Nakano, A. Nakatsuka, M. Nakayama, M. Koshioka and M. Yamagishi, 2002. Genetic analysis of floral anthocyanin pigmentation traits in Asiatic hybrid lily using molecular linkage maps. *Theor. Appl. Genet.*, 105: 1175–1182
- Benjamini, Y. and D. Yekutieli, 2001. The control of the false discovery rate in multiple testing under dependency. Ann. Stat., 29: 1165–1188
- Conesa, A., S. Götz, J.M. García-Gómez, J. Terol, M. Talón and M. Robles, 2005. Blast2GO: a universal tool for annotation, visualization and analysis in functional genomics research. *Bioinformatics*, 21: 3674– 3676
- Cooley, A.M. and J.H. Willis, 2009. Genetic divergence causes parallel evolution of flower color in Chilean Mimulus. *New Phytol.*, 183: 729–739
- Grabherr, M.G., B.J. Haas, M. Yassour, J.Z. Levin, D.A. Thompson, I. Amit, X. Adiconis, L. Fan, R. Raychowdhury, Q. Zeng, Z. Chen, E. Mauceli, N. Hacohen, A. Gnirke, N. Rhind, F. di Palma, B.W. Birren, C. Nusbaum, K. Lindblad-Toh, N. Friedman and A. Regev, 2011. Full-length transcriptome assembly from RNA-Seq data without a reference genome. *Nat. Biotechnol.*, 29: 644–652
- Huang, J., X.H. Liu, J.M. Wang and Y.M. Lü, 2014. Transcriptomic analysis of Asiatic lily in the process of vernalization via RNA-seq. *Mol. Biol. Rep.*, 41: 3839–3852
- Hsu, C.C., Y.Y. Chen, W.C. Tsai, W.H. Chen and H.H. Chen, 2015. Three R2R3-MYB transcription factors regulate distinct floral pigmentation patterning in *Phalaenopsis* spp. *Plant Physiol.*, 168: 175–191
- Iseli, C., C.V. Jongeneel and P. Bucher, 1999. ESTScan: a program for detecting, evaluating, and reconstructing potential coding regions in EST sequences. Proc. Int. Conf. Intelligent Syst. Mol. Biol., 99: 138– 148
- Koes, R., W. Verweij and F. Quattrocchio, 2005. Flavonoids: a colorful model for the regulation and evolution of biochemical pathways. *Trends Plant Sci.*, 10: 236–242

- Lai, Y.S., Y. Shimoyamada, M. Nakayama and M. Yamagishi, 2012. Pigment accumulation and transcription of LhMYB12 and anthocyanin biosynthesis genes during flower development in the Asiatic hybrid lily (*Lilium* spp.). *Plant Sci.*, 193–194: 136–147
- Li, X.Y., C.X. Wang, J.Y. Cheng, J. Zhang, J.A. da Silva, X.Y. Liu, X. Duan, T.L. Li and H.M. Sun, 2014. Transcriptome analysis of carbohydrate metabolism during bulblet formation and development in *Lilium davidii* var. unicolor. *BMC Plant Biol.*, 14: 358
- Lim, K.B. and J.M. van Tuyl, 2006. Lily: Lilium hybrids. In: Flower Breeding and Genetics: Issues, Challenges and Opportunities for the 21st Century, pp: 513–532. N.O. Anderson (ed.). Springer, Dordrecht, The Netherlands
- Mortazavi, A., B.A. Williams, K. McCue, L. Schaeffer and B. Wold, 2008. Mapping and quantifying mammalian transcriptomes by RNA-Seq. *Nat. Meth.*, 5: 621–628
- Shahin, A., M.J. Smulders, J.M. van Tuyl, P. Arens and F.T. Bakker, 2014. Using multi-locus allelic sequence data to estimate genetic divergence among four *Lilium* (Liliaceae) cultivars. *Front. Plant Sci.*, 5: 567–567
- Tamura, K., D. Peterson, N. Peterson, G. Stecher, M. Nei and S. Kumar, 2011. MEGA5: Molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. *Mol. Biol. Evol.*, 28: 2731–2739
- Wang, J.M., Q. Wang, Y. Yang, X.H. Liu, J.H. Gu, W.Q. Li, S.L. Ma and Y.M. Lu, 2014. *De novo* assembly and characterization of stress transcriptome and regulatory networks under temperature, salt and hormone stresses in *Lilium lancifolium*. *Mol. Biol. Rep.*, 41: 8231– 8245
- Winkel-Shirley, B., 2001. Flavonoid biosynthesis. A colorful model for genetics, biochemistry, cell biology, and biotechnology. *Plant Physiol.*, 126: 485–493
- Xu, W.J., C. Dubos and L. Lepiniec, 2015. Transcriptional control of flavonoid biosynthesis by MYB-bHLH-WDR complexes. *Trends Plant Sci.*, 20: 176–185
- Yamagishi, M., 2013. How genes paint lily flowers: Regulation of colouration and pigmentation patterning. *Sci. Hortic.*, 163: 27–36
- Yamagishi, M., Y. Shimoyamada, T. Nakatsuka and K. Masuda, 2010. Two R2R3-MYB genes, homologs of petunia AN2, regulate anthocyanin biosynthesis in flower tepals, tepal spots and leaves of Asiatic hybrid lily. *Plant Cell Physiol.*, 51: 463–474
- Yamagishi, M., S. Toda and K. Tasaki, 2014. The novel allele of the LhMYB12 gene is involved in splatter- type spot formation on the flower tepals of Asiatic hybrid lilies (*Lilium* spp.). New Phytol., 201: 1009–1020
- Ye, J., L. Fang, H.K. Zheng, Y. Zhang, J. Chen, Z.J. Zhang, J. Wang, S.T. Li, R.Q. Li, L. Bolund and J. Wang, 2006. WEGO: a web tool for plotting GO annotations. *Nucl. Acids Res.*, 34: 293–297
- Yuan, Y.W., J.M. Sagawa, L. Frost, J.P. Vela and H.D. Bradshaw, 2014. Transcriptional control of floral anthocyanin pigmentation in monkeyflowers (Mimulus). *New Phytol.*, 204: 1013–1027
- Zhang, M.F., L.M. Jiang, D.M. Zhang and G.X. Jia, 2015a. De novo transcriptome characterization of *Lilium* 'Sorbonne' and key enzymes related to the flavonoid biosynthesis. *Mol. Genet. Genomics*, 290: 399–412
- Zhang, Y., Y. Cheng, H. Ya, S. Xu and J. Han, 2015b. Transcriptome sequencing of purple petal spot region in tree peony reveals differentially expressed anthocyanin structural genes. *Front. Plant Sci.*, 6: 964
- Zhao, D., J. Yao, C. Ning, J.S. Meng, S.S. Lin, W. Ding and J. Tao, 2014. Transcriptome sequencing of a chimaera reveals coordinated expression of anthocyanin biosynthetic genes mediating yellow formation in herbaceous peony (*Paeonia lactiflora* Pall.). BMC Genomics, 15: 219–224

(Received 31 December 2017; Accepted 20 January 2018)