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Abstract 
 

A thermal imager was used for measuring the canopy temperature to calculate crop water stress index (CWSI) of rice under 

water deficit condition. The CWSI varied diurnally with peaks appeared at noon, and soil water deficit led to higher CWSI 

values during noon. Transpiration rate (Tr), stomatal conductance (gs) and net photosynthetic rate (Pn) were high at low CWSI, 

and reduced with increasing CWSI. The relationship between CWSI and Pn, Tr or gs at noon was described by quadratic 

polynomial equations. At critical noon, CWSI values for the decline trend in Pn (0.303, 0.385 and 0.446 at tillering, panicle 

initiation to booting, milk to soft dough stage) were higher than for decline in Tr and gs. Assuming a 5% reduction in Pn from 

maximum is moderate water deficit, the critical CWSI values were 0.420, 0.472 and 0.536 at tillering, panicle initiation to 

booting and milk to soft dough stages. CWSI at 14:00 decreased significantly with increasing relative soil moisture contents. 

There was a slight difference between the linear relations under different vapor pressure deficit (VPD) conditions. The critical 

relative soil moisture contents for a 5% reduction in Pn were 1.57%, 1.18% and 1.27% higher under high VPD than low VPD 

conditions. It implied that rice water status was determined in conjunction with field soil moisture content and air aridity. The 

water deficit diagnosis based on canopy temperature tracked by thermal infrared imager is a promising method in reflecting 

the conjuncted function of soil moisture deficit and air aridity on crop water status. © 2016 Friends Science Publishers 
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Introduction 
 

With increasing water scarcity, water deficit becomes one of 

the main abiotic stresses on crop production. Many 

researchers addressed the impact of water stress on crop 

physiological activity and growth. Moderate water stress 

improves crop yield and water use efficiency, while severe 

water deficit affects crop growth and eventually leads to loss 

in crop production (Turner, 1986). Crop water deficit 

diagnosis or water status monitoring is the base to proper 

irrigation scheduling. Thus, crop water deficit diagnosis 

methods based on soil water status, crop water potential, and 

leaf physiological parameters are of great concern 

(Yatapanage and So, 2001; Narasimhan and Srinivasan, 

2005; Silva et al., 2007). Methods based on crop 

physiological response to water stress, such as leaf water 

potential, leaf water content and stomatal conductance are 

considered as the most reliable one in qualifying crop water 

deficit (Jones, 2004). But these methods are always time 

consuming, sometimes destructive, and only provide points 

information. 

Stomatal closure induced by water deficit reduces leaf 

transpiration rate, and consequently results in reduced 

evaporative cooling and increased leaf temperature (Berni et 

al., 2009). Indices based on leaf or canopy temperature are 

widely used in crop water deficit diagnosis since 1970’s 

with the advent of hand-held thermometers (Idso et al., 

1977, 1981; Jackson et al., 1981; Jones, 2004; Gontia and 

Tiwari, 2008; Peng et al., 2011), such as stress degree days 

(SDD) (Jackson et al., 1977; Patil et al., 2014), canopy 

temperature variability (CTV) (Clawson and Blad, 1982; 

Gonzalez-Dugo et al., 2006) and crop water stress index 

(CWSI). CWSI has been applied in many different crops, 

such as wheat (Yuan et al., 2004; Gontia and Tiwari, 2008; 

Li et al., 2010), cotton (Silva and Rao, 2005; O'shaughnessy 

et al., 2011), maize (Anda, 2009; Li et al., 2010; Romano et 

al., 2011;Taghvaeian et al., 2012), bean (Erdem et al., 

2006b), and some vegetables (Cremona et al., 2004; Simsek 

et al., 2005; Erdem et al., 2010; Aladenola and 

Madramootoo, 2014; Rud et al., 2014) or fruits (Erdem et 

al., 2006a; Paltineanu et al., 2009). Early researchers mostly 

scanned several pots by hand-held infrared thermometer 

under field to detect the crop water status. Recently, a 

portable thermal imagers, as non-invasive, non-destructive 

and versatile imaging tool for monitoring crop canopy 

temperature also has been used for crop water deficit 
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diagnosis. Cohen et al. (2005) used thermal images taken 

with a radiometric infrared video camera to estimate the 

crop water status of irrigated cotton. Jones et al. (2009) 

captured grapevine thermal images by using a Therma 

CAM P25 (FLIR Systems, Sweden) to investigate and 

quantify the plant response to water stress through remote 

diagnosis, and then validated on soybean and cotton by 

O'shaughnessy et al. (2011) using a Therma CAM SC2000 

thermal infrared camera. 

Paddy rice, one of the most widespread cereal crops in 

the Asian monsoon region, is traditionally flooded and did 

not suffer from water deficit. Thus, water deficit diagnosis 

method based on canopy thermal image is seldom reported 

in paddy rice. Cao et al. (2013) reported the use of infrared 

thermal imaging technology (Fluke Ti-125 infrared camera) 

in reflecting the rice water status. With increasing water 

scarcity, water saving irrigation (WSI) techniques are 

widely used in rice paddies (Belder et al., 2004; Uphoff et 

al., 2010; Abbasi and Sepaskhah, 2011; Kato et al., 2011) 

exposing rice plants to a certain degree of water deficit. 

Non-flooded controlled irrigation (CI), uses the ratio of soil 

moisture content to the saturated one for water deficit 

diagnosis, is widely used WSI technique in China (Mao, 

2002; Peng et al., 2011). Under CI irrigation, rice is 

cultivated under non-flooding condition in about half of the 

rice season. The performance of water deficit diagnosis on 

WSI irrigated rice based on thermal imaging method is not 

clear. Meanwhile, crop water status is determined 

conjunctively by the soil moisture content and air aridity 

(Jones et al., 1985; Wang et al., 2010; Belko, et al., 2013; 

Conaty, et al., 2014). The impact of different atmospheric 

vapor pressure deficit (VPD) on the relations between 

CWSI and soil moisture contents is still unknown. 

Thus, infrared thermal images were taken from rice 

grown under water deficit conditions in East China. The 

CWSI was calculated based on the canopy temperature 

derived from the thermal images. The relations between 

CWSI and rice physiological activities such as leaf net 

photosynthesis rate (Pn), stomatal conductance (gs) and 

transpiration rate (Tr) were discussed to reveal if it is 

possible to diagnose the rice water status using the thermal 

image technique. Furthermore, we attempted to investigate 

whether the relationships between CWSI and soil moisture 

contents differed as changing atmospheric VPD.  

 

Materials and Methods 
 

Site Description and Experimental Design 

 

The experiment was conducted in 2012 at the Kunshan 

irrigation and drainage experiment station (31°15′15″N, 

120°57′43″E), Jiangsu, China. The study area has a humid 

subtropical monsoon climate (with average annual air 

temperature of 15.5°C, mean annual precipitation of 1,097.1 

mm). The soil in the experimental field is dark-yellow 

hydromorphic paddy soil. The soil texture in the plowed 

layer is clay, with organic matter of 21.9 g kg-1, total 

nitrogen of 1.03 g kg-1, and total phosphorus of 1.35 g kg-1. 

The soil was collected from a rice field, then air-dried, 

ground, and passed through a 4 mm sieve to remove coarse 

fragments, and homogenized manually by using the shovels 

and rakes. Then the soil was packed into the bottom-sealed 

pots (55 cm  55 cm  65 cm) to the depth of 60 cm at the 

bulk density of 1.28, 1.33 and 1.35 g m-3 for soil depths of 

0–10, 10–20 and 20–60 cm, respectively. The saturated soil 

water contents (v/v) for the layers of 0–20, 0–30, and 0–40 

cm are 52.4, 49.7, and 47.8%, respectively. The rice variety, 

Nanjing 46, was transplanted in the density of 9 hills (3 

plants per hill) per pot on June 28 in 2012. 

There were four water deficit treatments, W1, W2, 

W3, and W4 treatments. The lower soil moisture thresholds 

for irrigation at different stages from tillering to soft dough 

stage are listed in Table 1. The thresholds for W1 treatment 

are used to practice CI irrigation in China (Peng et al., 

2013). These treatments replicated two times in 8 pots 

buried in the soil with 10 cm above the ground, and were 

located under a movable rainout shelter. At each side outside 

the pot, there were three rows of rice to avoid the edge 

effect. When the soil moisture of any treatment approached 

the lower thresholds (measured daily at 8:00), the same 

amount of irrigation water, determined based on the soil 

moisture deficit to saturation in W1 treatment, was applied 

to each pot. 
 

Field Measurements 
 

Soil moisture contents in each pot were measured daily at 

8:00 using a time domain reflectometer (TDR, soil moisture, 

USA) and with 20 cm waveguides installed at 0–20, 20–40, 

and 40–60 cm depths. Daily meteorological data including 

precipitation volume, wind speed, temperature, solar 

radiation, and relative humidity, were recorded by an 

automatic weather station (ICT, Australia) every 30 minutes. 

Irrigation water volume was measured by a 500 mL plastic 

graduated cylinder (accuracy, 5 mL). After rice harvesting, 

yield was determined for each pot. 

By using an LC-pro+ photosynthetic system (ADC, 

UK), the Pn, Tr and gs of the last one or second full 

expanded rice leaf was measured simultaneously at regular 

interval of 4‒5 days on sunny day. The measurement 

included diurnal variation measured at 8:00, 10:00, 12:00, 

14:00, 16:00, 18:00 and routine measurement at 14:00. To 

avoid errors caused by indoor-outdoor air temperature 

difference, the LC-pro+ photosynthetic system was put in an 

outdoor environment for 3‒5 min in 0 

The crop water stress index (CWSI) developed by Idso 

et al. (1981), was defined as:  
 

L wet

dry wet

T T
CWSI

T T





                                     (1) 

 

Where TL is the canopy leaf temperature (°C), it was 

calculated by averaging temperatures derived from six 
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different sun-facing rectangular leaf areas (1 cm  1 cm) 

through analyzing thermal imager in Therma CAM 

Researcher Pro 2.8 software (FLIR system, USA); Twet is 

the average temperature of the wet reference that act as the 

substitute of the well-watered base line temperature; and Tdry 

is the upper boundary for canopy temperature, which 

equates to the temperature of a non-transpiring leaf with 

stomata completely closed, estimated by adding 5°C to the 

air, Tdry = Tair + 5°C (Irmak et al., 2000). 
 

Atmospheric Vapor Pressure Deficit (VPD) 
 

The atmospheric VPD (kPa) (Banerjee et al., 2012) was 

calculated with the temperature (T, °C) and relative 

humidity (RH, %) measured by the automatic weather 

station at the same time of the image capturing. 
 

17.27

237.30.6108e (1 )
T

TVPD RH                                   (2) 

 

Results 
 

Rice Yields under Different Water Treatments 

 

With the decrease in soil moisture thresholds in different 

water treatments, the total panicle numbers and rice yield 

decreased. The rice yields in W3 treatment was significantly 

lower than in W1 treatment, and yield in W4 treatment was 

significantly lower than in W1 and W2 treatment. But the 

number of kernels per panicle and thousand kernel weight 

were not affected by water status. The soil moisture 

thresholds for W1 treatment were adopted from the CI 

irrigation in China (Peng et al., 2013). It indicated that 

thresholds lower than these used in CI irrigation resulted in 

rice yield loss, and the yield reduction was mostly attributed 

in the decrease in panicle numbers. 

 

Diurnal Pattern of CWSI under Different Soil Water 

Deficit Conditions 

 

The CWSI of rice from different treatments varied diurnally 

for clear weather in the same pattern (Fig. 1). It reached the 

maximum at 12:00 or 14:00 and got the minimum in the 

morning or evening. Crop water deficit was defined as the 

gap between the root absorption and crop transpiration. The 

diurnal pattern of CWSI was likely dominated by the air 

evaporative demand. In the morning or evening, the air 

temperature and air evaporation ability were weak, the water 

absorbed by plants from soil was sufficient for plant 

physiological activities, rice did not suffer water deficit and 

the CWSI was low. At noon, crop transpiration rate was 

higher than root water absorption rate due to the high solar 

radiation and air temperature. As a result, crop suffered from 

water deficit to a certain degree, and the CWSI was high. 

Generally, low soil water contents led to high CWSI values, 

especially during noon. The peak CWSI values in W1, W2, 

W3 and W4 treatments increased in sequence with 

increasing soil water deficit degree. It can be concluded that 

CWSI value increased with increase in water stress degree 

and the daily most severe water stress occurred at noon 

(12:00 to 14:00). 

 

Crop Water Stress Index (CWSI) in Relation with Soil 

Moisture Depletion 

 

CWSI at 14:00 decreased in the range of 0.29-0.58 (Fig. 2) 

and increased with the reduction in θ/θs under different soil 

moisture deficit treatments. It got a periodic peak just prior 

to irrigation when the soil moisture approaching the lower 

thresholds in different treatments, and dropped in a short 

time after irrigation before it increased gradually again as 

soil moisture depleted. Comparison between different 

treatments indicated the lower θ/θs always accompanied 

with higher CWSI value. 

 

Effect of CWSI on Physiological Indexes 

 

Crop water deficit observed at noon (Fig. 1), and the 

relationships between CWSI and leaf physiological 

indexes at noon (12:00 and 14:00) were plotted in Fig. 3. 

When the CWSI was less than 0.4, water stress was 

light, Pn, Tr and gs varied at a high level. At CWSI 

higher than 0.5, Pn, Tr and gs decreased gradually (Fig. 

3). It indicated that Pn, Tr and gs were generally high 

when CWSI was low, and reduced with increase in 

CWSI. When CWSI was small, the water absorbed by 

plants from the soil was sufficient for plant transpiration, 

and rice leaf maintained a high Tr and gs, as a result the Pn 

was high. When CWSI was high, the water absorbed by 

plants from the soil was not enough for plant 

transpiration and water deficit led to partial closure of 

stomata to restrain transpiration water loss. Tr and gs 

reduced, and consequently resulted in reduction of Pn. 

The relationships between CWSI and Pn, Tr or gs could 

be described by quadratic polynomial equations, which 

were significant at p<0.05 confidence level. 

Critical CWSI values for the decline trend in Pn, Tr 

and gs were determined by analyzing the vertex point of 

the polynomial equations. The critical CWSI values for 

decline in Tr were 0.273, 0.319 and 0.241 at tillering, 

panicle initiation to booting and milk to soft dough 

stages. These values were very close to the critical 

CWSI values for decline in gs (0.269, 0.286 and 0.302), 

but lower than the critical CWSI values for decline in Pn 

(0.303, 0.385 and 0.446). Maintaining CWSI larger than 

the critical points for Tr decline, but lower than the 

critical points for Pn decline was an ideal range for high 

water use efficiency at leaf scale. Assuming a 5% 

reduction in Pn from maximum was the critical point of 

a moderate water stress, the critical CWSI values were 

estimated as 0.420, 0.472 and 0.536 at tillering, panicle 

initiation to booting and milk to soft dough stages 

respectively. 
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Critical Relative Soil Moisture Contents 

 

There were significant negative correlations between CWSI 

at 14:00 and relative soil moisture contents (θ/θs) at different 

stages (Fig. 4). At tillering, panicle initiation to booting and 

milk to soft dough stages, data were divided into two 

subsets with high and low VPD conditions. Slight 

differences were found between the correlations based on 

data measured under different VPD conditions. The linear 

slopes at higher VPD condition were 0.8372, 0.7353 and 

1.0633 at tillering, panicle initiation to booting and milk to 

soft dough stages, higher than the corresponding slopes 

(0.7417, 0.6860 and 0.9211) at lower VPD conditions. 

Thresholds of relative soil moisture content were 

determined based on the linear relation between CWSI and 

θ/θs, and the critical CWSI values either for decline in Pn or 

a 5% reduction in Pn from maximum. The critical values of 

θ/θs for decline in Pn were determined as 66.85%, 77.57% 

and 74.30% under high VPD condition at tillering, panicle 

initiation to booting and milk to soft dough stages, almost 

the same as the critical θ/θs values under low VPD 

condition. But for 5% reduction in Pn from maximum, the 

critical values of θ/θs were determined as 52.88%, 65.74% 

and 65.83% under high VPD condition, values were higher 

than critical θ/θs values under low VPD condition (Table 3). 

The thresholds of θ/θs used in the practice of CI irrigation 

were 60%, 70% and 70% at tillering, panicle initiation to 

booting and milk to soft dough stages in China (Peng et al., 

2013), these values almost equaled to the mean values of the 

critical θ/θs values for decline in Pn and for a 5% reduction 

in Pn from maximum. This indicated the soil moisture 

condition in traditional CI paddies did not always suffered 

from water deficit, while thresholds lower than these used in 

CI irrigation led to higher CWSI (Fig. 1 and 2) and resulted 

in rice yield loss (Table 2).  

Discussion 
 

The diurnal variation pattern of CWSI indicated that the 

daily most severe water stress occurred at noon (12:00 to 

14:00) in different water deficit treatments. This was 

consistent with some previous studies (Zia et al., 2012; 

Agam et al., 2013; Li et al., 2014). Thus, water deficit 

diagnosis should be conducted at noon. The relationships 

between CWSI and leaf physiological indexes (Pn, Tr or gs) 

at noon could be described by quadratic polynomial 

equations. The quadratic polynomial equation between 

CWSI and gs was the same with the results got by Aladenol 

and Madramootoo (2014) on bell pepper, but was different 

from the negatively linear relationship between CWSI and 

gs reported by Möller et al. (2007) or Zia et al. (2011). It 

might be because the data were collected on different 

sampling data, that might result in the difference in relations 

Table 1: Lower soil moisture thresholds at different stages for different treatments 

 
Treatment Tillering Panicle initiation to booting Heading to anthesis Milk to soft dough stage 

Early Middle Late Early Late 

Period duration 7.7~7.14 7.15~7.28 7.29~8.4 8.5~8.15 8.16~9.1 9.2~9.13 9.14-9.29 
W1 70%θs1 65%θs1 60%θs1 70%θs2 75%θs2 80%θs3 70%θs3 

W2 70%θs1 60%θs1 55%θs1 65%θs2 70%θs2 75%θs3 70%θs3 

W3 70%θs1 55%θs1 50%θs1 60%θs2 65%θs2 70%θs3 70%θs3 
W4 70%θs1 50%θs1 45%θs1 55%θs2 60%θs2 65%θs3 70%θs3 

θs1, θs2, and θs3 represent saturated volumetric soil moisture for the 0–20 cm, 0–30 cm, and 0–40 cm layers, respectively 

 

 
 

Fig. 1: Diurnal variation of crop water stress index (CWSI) under different soil water deficit treatments 
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Fig. 2: Crop water stress index (CWSI) at 14:00 and 

relative soil moisture contents (θ/θs) different soil moisture 

deficit treatments 
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between CWSI and gs among sampling date as reported by 

Rud et al. (2014) on potato. Based on the quadratic 

polynomial relationships between CWSI and leaf 

physiological indexes, the critical CWSI values for decline 

in Pn were higher than those for decline in Tr or gs. It also 

implied that stomatal limitation caused by stomata closure 

exerted larger reduction in Tr than in Pn (Mullet and 

Whitsitt, 1997; Ierna and Mauromicale, 2006). Keeping 

the CWSI between the critical points for Tr decline and 

for Pn decline was an ideal for higher leaf water use 

efficiency. 

The significant negative correlations between CWSI at 

14:00 and relative soil moisture contents (θ/θs) were same 

with the results reported in previous studies (Wang et al., 

2005; Paltineanu et al., 2009; Paltineanu et al., 2012; Cao et 

al., 2013). In present study, we also found slight differences 

between the correlations based on data measured under 

different VPD conditions. The critical θ/θs values for a 5% 

reduction in Pn, the differences between high and low VPD 

conditions were 1.57%, 1.18% and 1.27%. These 

differences were very small, and ascribed to the relative 

narrow VPD ranges (2.20‒2.96 kPa, 1.03‒1.40 kPa, 1.30‒

1.38 kPa at tillering, panicle initiation to booting and milk to 

soft dough stages) in present study, due to the high air 

humidity in humid region of East China. If the VPD ranges 

were larger, the difference in critical θ/θs values between 

high and low VPD conditions might be more obvious. It 

implied that crop water status was determined conjunctively 

by field soil moisture content and atmospheric conditions, 

and the plant might suffer a higher stress under the same soil 

moisture condition when the VPD is higher (El-Sharkawy, 

2006; Padhi, et al., 2012; Schoppach and Sadok, 2012; 

Belko et al., 2013). Naithani et al. (2012) argued that a 

combination of atmospheric and surface soil drought 

controlled leaf transpiration rate, whereas stomatal 

conductance was mainly driven by atmospheric drought. 

Table 2: Rice yields and yield components for different treatments 
 

Treatment Total panicle numbers (104 ha-1) kernel numbers (per panicle) Thousand kernel weight (g） Yield (kg ha-1) 

W1 302.40 a 86.91 a 27.04 a 6439.01 a 

W2 290.77 a 86.32 a 27.68a 6338.47 ab 
W3 267.51 a 85.13 a 27.57 a 5815.34 bc 

W4 255.88 a 87.94 a 26.83 a 5534.89 c 
*Different letters in each column represent significant difference between treatment at p=0.05 with Tamhane’s test 

 

 
 

Fig. 3: Relationship between CWSI and transpiration rate (Tr), stomatal conductance (gs), net photosynthetic rate (Pn) at 

12:00 and 14:00 at different stages 
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Conaty et al. (2014) showed adjusting the critical canopy 

temperature by utilizing its strong associations to leaf water 

potential and VPD could improve the precision of irrigation 

in canopy temperature based irrigation scheduling protocols. 

Thus, when the rice WSI irrigation techniques were applied 

in arid regions with high VPD values, the ideal water deficit 

diagnosis should be done by incorporating the soil moisture 

condition with air VPD condition, and the critical relative 

soil moisture thresholds determined in humid region might 

not perform well in arid region. From this point of view, the 

water deficit diagnosis based on canopy temperature tracked 

by high precision thermal infrared imagers is a promising 

method in reflecting the conjunction function of soil 

moisture deficit and air aridity on crop water status. 

 

Conclusion 
 

The CWSI of rice under different water treatments, 

calculated based on the canopy temperature derived from 

infrared thermal images, varied in the same diurnal pattern 

with peak values at noon. Soil water deficit led to high 

CWSI values, especially at noon. Pn, Tr and gs reduced 

generally with increase in CWSI. Critical noon CWSI 

values for the decline trend in Pn were higher than those for 

decline in Tr and gs. Slight differences were found between 

the linear relations of CWSI at 14:00 and relative soil 

moisture contents under high or low VPD conditions, and 

the critical θ/θs for a 5% reduction in Pn that was assuming 

as moderate water stress in Pn were slightly higher under 

high VPD than low VPD conditions. It implied that rice 

water status was determined conjunctively by field soil 

moisture content and air aridity, the water deficit diagnosis 

based on canopy temperature tracked by thermal infrared 

imager is a promising method in reflecting the conjunction 

function of soil moisture deficit and air aridity on crop water 

status. 
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