INTERNATIONAL JOURNAL OF AGRICULTURE & BIOLOGY ISSN Print: 1560–8530; ISSN Online: 1814–9596 17–0147/2017/19–5–1175–1186 DOI: 10.17957/IJAB/15.0406 http://www.fspublishers.org

Full Length Article

Association Mapping of Grain Weight, Length and Width in Barley (*Hordeum vulgare*) Breeding Germplasm

Yunping Lai^{1,2†}, Y. Yu^{2†}, X. Liu¹, H. Wan², Z. Zhang², L. Wang², Y. Leng², L. Ma^{1,3}, W. Yang² and Z. Feng^{1*}

¹College of Agronomy, Sichuan Agricultural University, Chengdu 611130, Sichuan, China

²Crop Research Institute, Sichuan Academy of Agricultural Sciences, Chengdu 610066, Sichuan, China

³College of Environmental Sciences, Sichuan Agricultural University, Chengdu 611130, Sichuan, China

*For correspondence: zyfeng49@126.com

[†]These authors contributed equally to this paper

Abstract

Grain weight, grain length and grain width are important target traits in the malting barley breeding, due to their attributes for determining the market value of barley grain. In this study, a diversity collection of 112 accessions was used to identify quantitative trait loci (QTLs) for them by association mapping approach with simple sequence repeat (SSR) markers and detect elite alleles related to the improvement of grain size. The heritability calculated for grain weight over multi-environment experiments was 83.6%, while the values of grain length and width were 70.0% and 69.9%, respectively. Population structure analysis showed that all the accessions were divided into two subgroups that originated from East Asia and North America. A total of five QTLs for grain weight were identified on chromosomes 1H, 2H, 5H and 6H, respectively, and the QTLs on 5HS and 6HS were detected in more than one environment. The A4 allele of GBM1215 on 6HS increased grain weight significantly in all three environments. Four and two QTLs were detected for grain length and width, respectively. QTL for grain width on 2HS was detected in two environments and the A1 allele produced wider grain. These findings might be valuable for marker-assisted selection of breeding lines to improve grain weight and width. © 2017 Friends Science Publishers

Keywords: Barley (Hordeum vulgare L.); Association mapping; Grain weight; Grain length; Grain width

Introduction

Barley (Hordeum vulgare L.) is the fourth most important cereal crop in the world and its grain is mainly used for animal feed, malting and brewing (Virender and Zhang, 2003; Walker et al., 2013). As one of the most adaptable cereals, the growing zone of barley ranges from subarctic to subtropical areas (Wenzel et al., 2015). Tibetan Plateau and its vicinity are considered as one of the centers of genetic diversity and domestication of cultivated barley (Feng et al., 2006a; Feng et al., 2006b; Dai et al., 2012). A larger number of wild barleys have been found in Tibet, Qinghai and Sichuan province of China, with high genetic diversity (Feng et al., 2006b; Dai et al., 2012). It was reported that Chinese cultivated barley originated from the tworowed wild barley from Tibet was significantly different from those found by other centers of genetic diversity (Dai et al., 2012).

Grain size including grain weight, grain length and grain width are important attributes for determining the market value of barley grain. Heavy and plump grains are always associated with superior malting quality, owing to their highsu malt extract, and better feed quality with more starch per grain (Hadjichristodoulou, 1990). Grain weight is also one component of yield (Hadjichristodoulou, 1990; Passarella *et al.*, 2005), which is mainly determined by grain length and grain width (Sun *et al.*, 2013; Rasheed *et al.*, 2014). Thus, enhancing grain size is an efficient approach to improve both end-use quality and yield potential of barley.

Grain weight, length and width are complex quantitative traits, which are controlled by polygenes or QTLs (Sun *et al.*, 2013) and influenced by environment (Xing and Zhang, 2010; Walker *et al.*, 2013), i.e. temperature during pre-anthesis and grain filling (Wallwork *et al.*, 1998; Passarella *et al.*, 2005), drought stress (Royo *et al.*, 2000), etc. In the past few decades, with the help of molecular markers and marker-based genetic maps, identifications of QTLs for grain weight in barley have been reported in different barley germplasms. According to those reports, QTLs for grain weight are almost distributed on all the seven chromosomes of barley (Kjaer and Jensen, 1996; Tinker *et al.*, 1996; Bezant *et al.*, 1997; Marquezcedillo *et al.*, 2001; Li *et al.*, 2005; Szücs *et al.*, 2009; Worch *et al.*,

To cite this paper: Lai, Y., Y. Yu, X. Liu, H. Wan, Z. Zhang, L. Wang, Y. Leng, L. Ma, W. Yang and Z. Feng, 2017. Association mapping of grain weight, length and width in barley (*Hordeum vulgare*) breeding germplasm. *Int. J. Agric. Biol.*, 19: 1175–1186

2011; Walker et al., 2013). Matthies et al. (2012) detected several OTLs for grain weight on chromosomes 1H, 3H and 7H by association mapping using simple sequence repeat (SSR) and Diversity Arrays Technology (DArT) markers, most of which were consistent with OTLs detected in reported bi-parental populations. On chromosome 2H, the intervals of several reported QTLs for grain weight were overlapped in different germplasms (Bezant et al., 1997; Marquezcedillo et al., 2001; Szücs et al., 2009; Mikolajczak et al., 2016; Wang et al., 2016). Moreover, major QTLs for grain weight on chromosome 4H (Pillen et al., 2003; Korff et al., 2006; Maurer et al., 2016) were also identified around the vernalization gene 'Vrn-H2' (Yan et al., 2004). QTLs for grain length and grain width were detected throughout most chromosomes (Backes et al., 1995; Ayoub et al., 2002; Walker et al., 2013). The putative candidate gene of one major grain length OTL on chromosome 4H that explained 22.3% of the phenotypic variance was homologous to An-1 in rice, which encodes a bHLH protein regulating cell division, grain length, and awn elongation (Zhou et al., 2016).

Linkage mapping based on bi-parental cross population and association mapping (AM) are considered as two main approaches in QTLs detection. AM method that had been firstly applied in human genetics for complex diseases was based on linkage disequilibrium (LD) in diversity collection of germplasms. In plant, the population for AM covers larger number of alleles used in breeding, and takes most historical recombination events into account (Flint-Garcia *et al.*, 2003; Gupta *et al.*, 2005; Breseghello and Sorrells, 2006a), with advantages of increased involved genetic variations and resolution for QTL detection. Currently, AM has been widely applied in identifying phenotype-markers associated in barley (Long *et al.*, 2013; Zhou and Steffenson, 2013; Ziems *et al.*, 2014).

Although lots of QTLs for grain weight and size related traits have been reported in recent years, comparison of effects between different QTL alleles from different germplasms were reported rarely, which made it difficult for breeders to select suitable parental lines. Moreover, prevailing artificial plant breeding in China adopts only a small number of main lines that had unfortunately narrowed the genetic base of modern cultivated barley and made a great bottleneck on genetic enhancement for yield. It seems that introducing extra germplasms and further dissecting elite alleles become an effective remedy.

In this study, a diversity association mapping panel of 112 barley accessions from China, Mexico and USA was evaluated over three environments using simple sequence repeat (SSR) markers with a mixed linear model approaches (MLM), and the effects for enhancing grain weight, length and width were further compared between different QTL alleles at detected sites by association mapping. The goals of this study were to identify loci associated with grain weight, length and width, and detect the elite allelic variations enhancing grain size.

Materials and Methods

Plant Materials

The diversity barley panel contained 112 accessions, including elite parental lines, advanced breeding materials, current cultivars and landraces with the origins of Gansu (China), Qinghai (China), Sichuan (China), Tibet (China), Mexico and USA, which were provided by the Barley Research Centre of Sichuan Agriculture University (Table 1). The whole genotypes consisted of 104 six-rowed and 8 two-rowed accessions. Among the collection, 77 are hull-less barleys and 35 are hulled barleys. Of the 104 six rowed barley lines, 73 are naked barleys and the others are hulled barleys.

Trait Evaluation

Field trials were conducted in the northwest of the Chengdu basin, Sichuan Province, China (103°88' E, 30°82' N; 548 m above sea level) in the years of 2014 (CD2014) and 2015 (CD2015) and the hilly area of Nanchong, Sichuan Province, China (105°97' E, 30°78' N; 680 m above sea level) in 2015 (NC2015). Both Chengdu and Nanchong are under a humid subtropical monsoon climate with the average annual rainfall from 887.3 mm to 927.6 mm. Each field experiment was performed in a randomized complete block design with two replicates. Each plot of the field experiment had five rows with 1.5 m long and spaced 0.35 m apart. After harvest, the grain weight was measured as the mean weight of 1000 individual grains (TGW), while grain length (GL) and grain width (GW) was defined as the longest and the widest distance through an average of 100 grains, respectively. All of three traits were conducted by the SC-G plant grain analysis system (Wseen company, China).

Genotyping

A total of 319 SSR markers, which were selected according to the consensus genetic map by Varshney et al. (2007) were used to genotyping. Each chromosome contained about 45 SSR markers for a balanceable coverage of barley chromosome. Genomic DNA was isolated from bulked young leaf tissue of 10 seedlings per accession using CTAB procedure (Irfan et al., 2013). PCR reactions were performed in a total volume of 15 µL containing 1x Buffer, 2 mmol L⁻¹ MgCl₂, 0.25 mmol L⁻¹ dNTPs, 0.25 µmol L⁻¹ of each primer, 1 U rTaq-polymerase and 20 ng genomic DNA as template. The PCR profile was as follows: one cycle of 94°C for 5 min; 35 cycles of 94°C for 45 sec, 55-60°C (primer depended) for 45 s and 72°C for 1 min; and a final extension at 72°C for 10 min. The PCR products were separated in 6% (w/v) denaturing polyacrylamide gels with 1 x TBE Buffer and then were visualized by silver staining.

Table 1: The code, name, origin and row type of 112barley accessions

Table 1: Continued

Code	Name	Origin	Row type
1	GQ2	Gansu (China)	six
2	GQ3	Gansu	six
3	GQ4	Gansu	six
4	9516	Gansu	six
5	DLH	Gansu	six
6	HZBQK	Gansu	six
7	KJZBQK	Gansu	six
8	MQK	Gansu	six
9	HQK	Gansu	six
10	CQK	Gansu	six
11	HQK	Gansu	six
12	SYQK	Gansu	six
13	CQK	Gansu	six
14	DMQK	Gansu	six
15	LLGQK	Gansu	six
16	LLLQK	Gansu	six
17	XLQK	Gansu	six
18	QLZQK	Gansu	six
19	BQ1	Qinghai (China)	six
20	BQ2	Qinghai	six
21	BQ3	Qinghai	six
22	BQ5	Qinghai	six
23	BQ6	Qinghai	six
24	BQ7	Qinghai	six
25	KL2	Qinghai	six
26	KL10	Qinghai	two
27	KL12	Qinghai	six
28	HYTQK	Qinghai	six
29	LDQK	Qinghai	six
30	HZSCR	Qinghai	six
31	DMDGLLQK	Qinghai	six
32	HZBLLQK	Qinghai	six
33	HZLLQK	Qinghai	six
34	HYLLL	Qinghai	six
35	DTBLS	Qinghai	six
36	CMBQK	Qinghai	six
37	LDBQK	Qinghai	six
38	M112BQK	Qinghai	six
39	YSBQK	Qinghai	six
40	HUBLLQK	Qinghai	six
41	DTBLL	Qinghai	six
42	DTHJN	Qinghai	six
43	HZHCM	Qinghai	six
44	HZCM	Qinghai	six
45	HZLCM	Qinghai	six
46	YHCMQK	Qinghai	SIX
47	XHXQK	Qinghai	six
48	XHHQK	Qinghai	SIX
49	HLWLQK	Qinghai	SIX
50	MYQLQK	Qinghai	six
51	ZYDM	Qinghai	SIX
52	HYHQK	Qinghai	six
53	REGBXHK	Qinghai	SIX
54	GHHQK	Qinghai	six
55	LDLQK	Qinghai	six
56	HZZPQK	Qinghai	SIX
57	MZQK	Qinghai	SIX
58	FB0310	Qinghai	SIX
59	FBO226	Sichuan (China)	six
60	SPZQK	Sichuan	SIX
61	QNQK	Sichuan	SIX
62	BYQK	Sichuan	SIX
63	AQ4	Sichuan	SIX
64	AQ5	Sichuan	SIX
65	BDCQK	Tibet (China)	SIX

66	BDQK	Tibet	six
67	FB0641	Tibet	six
68	FB0642	Tibet	six
69	FB0647	Tibet	six
70	FB0648	Tibet	six
71	FB0650	Tibet	six
72	FB0651	Tibet	six
73	Golas Bley	Mexico	two
74	B3034	Mexico	two
75	Tibetannia	Mexico	two
76	K5	Mexico	two
77	ARUMIR	USA	six
78	WAS3	USA	two
79	APM-HB1905	USA	six
80	H.SAT.V.HAX.F.FURB	USA	six
81	SAH	USA	six
82	AHOR443170	USA	six
83	AHOR2194170	USA	six
84	BANG-IU	USA	six
85	BRABHVTIB	USA	six
86	H.VULJ.L.TRIF	USA	six
87	M66.85-BI12168	USA	six
88	ORE"S"BBB-177	USA	six
89	IBNBF8-582SEL.6AP	USA	six
90	IBNBF8-588SEL.1AP	USA	six
91	IBNBF8-594SEL.2AP	USA	six
92	FB0598	USA	six
93	FB0604	USA	six
94	FB0605	USA	six
95	FB0606	USA	six
96	FB0607	USA	six
97	FB0611	USA	SIX
98	FB0612	USA	six
99	FB0613	USA	six
100	FB0614	USA	six
101	FB0615	USA	SIX
102	FB0616	USA	six
103	FB0619	USA	SIX
104	JNABBB-204	USA	SIX
105	JNABBB-205	USA	SIX
106	FB0844	USA	SIX
107	FB0609	USA	two
108	XQU/58	USA	SIX
109	51/21 CM125	USA	two
110	GY135	USA	SIX
111	GY137	USA	SIX
112	GY138	USA	SIX

Among the 319 SSR markers, 147 markers with clear and sharp PCR bands were selected for further analysis of genetic diversity and association mapping in this study (Table 2).

Statistical Analysis

Analysis of variance (ANOVA) for the phenotypic data was carried out using the general linear model function (GLM) of the SPSS statistical package (SPSS Inc., Chicago, IL). The genotypic variance V_g^2 , genotype-environment interaction V_{ge}^2 , and environmental variances V_e^2 were estimated for each trait to measure their heritability (h_m^2) by the following formula: $h_m^2 = V_g^2/(V_g^2 + V_{ge}^2/e + V_e^2/re)$, where *e* is number of trials and *r* is number of replications (Long *et al.*, 2013).

Lai et al. /	Int. J.	Agric.	Biol.,	Vol.	19.	No.	5.	2017
			,		,		-,	

Table 2: Number of alleles and PIC values caculated based	on the panel of 112 barley genotypes
--	--------------------------------------

Cada	Logua	Chromosom	Desition ⁸	Annaaling Torrestore (90)	Mab	NLaC	DICd
	LOCUS	Unromosome	rosition"	Annealing Temperature (°C)			PIC [®]
1	EBMACU30U	1115	38.70 50.11	33 55	2	1.02	0.01//
2	GBM1412 D 0250	1115	59.11	55	2	1.03	0.0351
3	Bmag0550	1115	59.85	55	10	0.21	0.8388
4	CDM1451	1115	60.42	60 55	0	4.41	0.7730
5	GBM1451 CDM1224	1115	60.52	55 55	5	2.01	0.0157
6	GBM1234	IHS	61.06	55	2	1.55	0.3565
/	EBmac0639	IHS	61.81	55	2	1.02	0.01//
8	GBM1336	IHL	63.01	55	2	1.06	0.0605
9	Bmac0090	IHL	63.66	55	10	6.15	0.8374
10	EBmac0695	IHL	65.31	55	3	2.13	0.5311
11	HVM20	IHL	66.25	55	5	3.27	0.6942
12	scssr10477	1HL	79.09	55	5	1.32	0.2430
13	GBM1092	1HL	91.79	55	1	1.00	0.0000
14	GBM5162	1HL	93.12	55	2	1.02	0.0177
15	Bmag0579	1HL	132.84	55	8	2.63	0.6202
16	GBM1461	1HL	135.94	55	6	4.09	0.7554
17	GBM1434	1HL	136.38	55	2	1.87	0.4641
18	scssr08238	1HL	139.81	55	5	1.98	0.4949
19	GBM1204	1HL	139.81	55	3	2.67	0.5594
20	GBM1187	2HS	19.51	55	2	1.72	0.4193
21	scssr10226	2HS	46.63	55	3	1.81	0.4456
22	scssr07759	2HS	48.58	55	4	1.74	0.4245
23	GBM1446	2HS	58.13	55	3	1.68	0.4033
24	GBM1251	2HS	58.8	55	5	2.79	0.6427
25	HvXan	2HS	62.69	55	2	1.29	0.2254
26	scssr03381	2HS	63.61	55	5	4.51	0.7779
27	GBM1459	2HS	64.35	55	5	4.29	0.7671
28	GBM5230	2HS	65.16	55	2	1.09	0.0853
29	GMS003	2HS	66.05	60	7	1.64	0.3887
30	EBmac0640	2HS	68.78	55	4	1.17	0.1429
31	GBM1203	2HS	69.58	55	2	1.11	0.1014
32	EBmac0525	2HS	70.98	55	1	1.00	0.0000
33	Bmag0518	2HL	72.01	60	11	5.04	0.8015
34	Bmag0829	2HL	74.56	55	6	2.65	0.6229
35	Bmag0711	2HL	79.52	55	8	3.33	0.6993
36	GBM1468	2HL	84.06	55	4	1.83	0 4538
37	GBM1408	2HL	89.44	55	2	1 13	0.1172
38	EBmatc0039	2HL	93.26	60	3	1 39	0.2801
39	GBM1440	2HL	96.34	55	4	2.67	0.5594
40	GBM1208	2HL 2HL	102.85	55	5	2.31	0.5669
40	GBM11200 GRM1149	2HL 2HL	102.05	55	4	2.51	0.6172
42	EBmac0415	2HL 2HI	117.86	55	4	1.93	0.4831
42	GRM1200	211L 2111	124.8	55	1	1.00	0.0000
43	GBM1200 GBM1408	211L 2111	124.0	55	1	2 32	0.0000
44	0D1/11490 Pmac0740	21112	125.71	55	5	2.52	0.5002
45	CPM1475	21112	147.93	55	3	2.09	0.0204
40	GDIVI14/J	21112	149.47	55	5	1.39	0.3092
4/	CDM1200	211C	130.49	55	5	2.33	0.0079
40	CDM1200	2110	3.03	55	2	1.45	0.2991
49	GBM1450 CDM1292	383	15.94	55 55	2	1.39	0.2817
50	GBM1382	3HS	10.32	55	4	3.82	0.7384
51	EBmac0/05	3HS	20.49	55	5	3.01	0.6676
52	scssr10559	3HS	23.26	55	6	1.94	0.4846
53	GBM1284	3HS	31.95	55	2	1.05	0.0436
54	Bmag0023	3HS	46.28	55	1	1.00	0.0000
55	GBM1163	3HS	60.27	55	2	1.09	0.0853
56	GBM1110	3HS	60.27	55	3	2.19	0.5429
57	GBM1495	3HL	62.57	55	2	1.11	0.1014
58	GBM1405	3HL	86.33	55	4	1.51	0.3367
59	GBM1233	3HL	89.66	55	3	1.61	0.3774
60	Bmag0013	3HL	113.7	60	12	6.35	0.8426
61	GBM1420	3HL	152.53	55	5	3.28	0.6955
62	GBM1501	4HS	0	55	2	1.52	0.3418
63	HVM40	4HS	22.4	60	8	3.22	0.6894
64	GBM1323	4HS	28.96	55	3	1.88	0.4686
65	scssr20569	4HS	44.87	55	4	1.84	0.4579

Table 2: Continued

Table 2: Continued

66	Bmag0808	4HL	53.04	55	7	3.43	0.7082
67	ERmac0906	4HI	54.98	55	,	187	0.4650
68	Rmac0181	4HI	58 51	55		3 45	0.7098
60	Dmac0101 Dmac0020	4111	59.6	55) 2.11	0.6876
09	Dmac0050	40L	38.0	55	5	y 5.21	0.0870
70	Bmag0490	4HL	62.19	33	1	1 3.13	0.0809
/1	GBM1299	4HL	/2.04	60	3	1.3/	0.2686
72	EBmac0658	4HL	75.59	55	4	1.81	0.4466
73	EBmac0635	4HL	93.06	55	1	1 2.26	0.5582
74	EBmac0679	4HL	94.5	55	1	0 2.48	0.5974
75	EBmac0701	4HL	96.15	55	1	5 2.61	0.6159
76	GBM1220	4HL	99.86	55	4	1.33	0.2496
77	HVMLOH1A	4HL	102.27	55	4	2.06	0.5148
78	HVM67	4HL	120.5	60	4	1 98	0 4950
79	GRM1388	4HL	122.35	55	2	193	0.4807
80	Bmag0138	4HI	122.55	55	-	2 69	0.6276
Q1	GRM1453	4HL 4HL	127	55		188	0.4668
01	02206	411L	(12)	55		1.00	0.4008
82	SCSSF02500	5H5	0.15	33	3	2.51	0.6022
83	GBM11/6	5HS	18.59	22	2	1.44	0.304/
84	scssr07106	5HS	20.44	55	4	1.86	0.4635
85	GBM5028	5HS	27.41	55	3	1.61	0.3793
86	EBmac0970	5HS	40.77	55	2	1.96	0.4885
87	Hvm30	5HS	41.93	55	4	1.49	0.3327
88	Bmag0751	5HS	42.87	55	1	0 3.77	0.7346
89	Bmag0337	5HS	44 99	55	ş	3 68	0 7285
90	Rmag()323	5HS	50.85	55	1	4 11.06	0.9096
91	Bmac0006	5115	53.12	60		3.64	0.7251
02	CPM1200	5115	60.96	55		5 5.04 1 77	0.7251
92	GDM11399	SIL	09.80	55	2	2.27	0.4342
93	EBmac0684	SHL	/3./9	22	Ċ	2.27	0.5585
94	GBM1506	5HL	/5.45	55	e	2.13	0.5312
95	scssr15334	5HL	77.79	55	6	2.19	0.5444
96	GBM1483	5HL	80.64	55	2	. 1.11	0.1014
97	Bmag0812	5HL	90.32	55	1	0 4.62	0.7835
98	scssr05939	5HL	90.64	55	3	1.67	0.4022
99	GBM1227	5HL	91.82	55	2	. 1.19	0.1626
100	GBM1231	5HL	102.27	55	3	1.15	0.1270
101	GRM1438	5HL	104 74	55	- 1	135	0.2616
102	GBM1205	5HI	107.11	55		2 47	0.5045
102	GBM5008	5HI	112.02	55	-	1 53	0.3/70
103	CDM1262	5111	120.69	55	-	1.55	0.3479
104	GBM1303	SHL	120.68	33	2	1.30	0.2037
105	GMS001	SHL	122.09	60	8	5 3.70	0.7339
106	EBmatc0003	5HL	127.69	60	4	2.19	0.5452
107	GBM1470	5HL	130.55	55	1	1.00	0.0000
108	GBM1166	5HL	133.5	55	2	1.32	0.2449
109	GBM1490	5HL	144.14	55	3	1.97	0.493
110	GBM1164	5HL	156.88	55	2	1.09	0.0853
111	84c21i33	6HS	0	55	4	2.93	0.6585
112	Bmac0316	6HS	7.16	55	6	5 1.42	0.2970
113	GRM1270	6HS	36.52	55		1 23	0.2052
114	GBM1270 GRM1215	648	39.54	55	-	2 69	0.6283
114	CPM1213	6115	55 1	55		2.09	0.0285
115	0 <i>DM</i> 1212		55.1	55	د م	2.14	0.2929
116	Bmac0040	6HS	61.07	22	/	2.14	0.5330
117	Bmag0344	6HS	67.8	55	1	1.00	0.0000
118	scssr05599	6HL	96.34	55	4	3.12	0.6797
119	GBM1140	6HL	97.31	55	2	1.99	0.4998
120	GBM1274	6HL	123.45	55	1	1.00	0.0000
121	GBM1276	6HL	124.29	55	2	1.93	0.4824
122	GBM1275	6HL	124.29	55	3	1.98	0.4959
123	GBM1087	6HL	127.7	55	-	2.97	0.6632
124	GBM1404	6HL	129.76	55	1	1.00	0,0000
125	GRM1176	745	88	55	1	1.00 1.07	0.6358
125	Dmac()))/	7115	0.0	55	4	2.0/	0.0230
120	Dinug0200	/05	15.25	55	1	2 3.01 1.00	0.6210
12/	GBM3060a	/HS	unknown	22	I	1.00	0.0000
128	GBM1326a	THS	unknown	55	1	1.00	0.0000
129	GBM5060b	7HS	31.24	55	7	3.42	0.7079
130	GBM1326b	7HS	31.24	55	7	3.58	0.7208
131	EBmac0603	7HS	35.39	60	5	1.74	0.4267

Table 2: Continued

Table 2: Continued

132	Bmag0914	7HS	46.85	55	7	2.32	0.5686
133	GBM1464	7HS	53.43	60	6	1.93	0.4824
134	Bmac0282	7HS	59.31	55	1	1.00	0.0000
135	Bmac0187	7HS	72.57	60	8	3.43	0.7080
136	GBM1432	7HS	72.81	55	1	1.00	0.0000
137	Bmag0321	7HL	79.24	60	9	4.09	0.7559
138	EBmac0827	7HL	80.57	55	8	2.93	0.6584
139	GBM1115a	7HL	unknown	55	1	1.00	0.0000
140	GBM1115b	7HL	81.85	55	5	4.48	0.7767
141	Bmag0369	7HL	83.31	60	5	1.91	0.4749
142	GBM1303	7HL	86.43	55	9	3.78	0.7358
143	GBM1297	7HL	88.56	55	2	1.46	0.3157
144	GBM1174	7HL	93.86	55	2	1.25	0.1983
145	GBM5225	7HL	101.73	55	3	2.61	0.6171
146	GBM1456	7HL	136.79	55	2	1.65	0.3922
147	scssr04056	7HL	148.22	55	11	4.18	0.7608

^aGenetic position (in cM) of marker on chromosome based on reported by (Varshney et al., 2007)

^bObserved number of alleles

^cEffective number of alleles

^dPolymorphism information content

Pearson correlation coefficients between grain weight, grain length and grain width in different field trials were calculated using SPSS.

For each marker, its genetic diversity parameters, observed number of alleles and effective number of alleles per locus were calculated using POPGENE software version 1.32 (Yeh and Boyle, 1999). Additionally, Polymorphism information content (PIC) values were computed by the formula: PIC= $1-\sum P_i^2$, where P_i is the frequency of the *i*th SSR allele, with the software PowerMarker version 3.25 (Liu and Muse, 2005).

Population Structure Estimate

The population structure of the diversity panel was investigated based on a set of 28 unlinked SSR markers, which were located on different chromosome arms. The genetic distance between two chosen markers on the same chromosome arm was more than 20 cM to avoid genetic linkage (Kulwal et al., 2012). Population structure was estimated using principal component analysis (PCA) based on simple matching of alleles performed by software TASSEL 2.0 (Yu et al., 2006) and by the Bayesian clustering analysis with STRUCTURE software version 2.3.3 (Pritchard et al., 2000) running 10 times independently, with K ranging from 1 to 11 in each run using default setting of admixture model for the ancestry of individual and correlated allele frequencies. To confirm the true number of subgroups (K), ΔK calculated as described by Evanno et al. (2005) was plotted against K for the second approach. The best number of population subgroup was determined by ΔK with their peaking value (Evanno et al., 2005).

Association Analysis

Association analysis was carried out using mixed linear

model (MLM) approach as described in the software package TASSEL 2.0 (Bradbury *et al.*, 2007). SSR markers with minor allele frequency less than 5% were removed from the data set to reduce false associations. Furthermore, to control both Type I and Type II errors, *Q* values obtained by the software STRUCTURE and kinship matrix generated using the program TASSEL 2.0 were implemented as covariates in MLM analysis (Bradbury *et al.*, 2007).

A threshold of P=0.01 [-Log₁₀(P)=2] was set for declaring the significant marker-trait associations. Significant markers representing the same QTL were defined as having a linkage distance less than 12 cM and LD (measured as r^2 from pair-wise analysis) greater than 0.2 (Locatelli *et al.*, 2013).

Allele Effects Evaluate

Phenotypic effects of major alleles were evaluated in comparison to the 'null allele' (plus missing and rare alleles) for each locus (Breseghello and Sorrells, 2006b), and T-test between major allele and 'null allele' was conducted using the SPSS statistical package (SPSS Inc., Chicago, IL).

Results

Phenotypic Analysis

Large phenotypic variations were observed for grain weight, grain length and grain width in different trials, and the phenotype values of each trait followed normal distribution in the population (Table 3), indicating a multigene genetic programming model. The heritability (h^2_m) for grain weight, grain lenth and grain width across the three environments were 83.6%, 70.0% and 69.9%, respectively (Table 3), suggesting the grain length and grain width were more sensitive to environment than grain weight. ANOVA also showed that the mean square (MS) values of environment (E) for grain length and grain width were much greater than their MSs of genotype (G) (Table 4). Moreover, $G \times E$ interaction (GEI) variances were significant for grain weight, length and width (P<0.01) reflecting that different genotypes had different sensitivity to environmental alternatives. However, their values of MS were often less than G and E (Table 4). Positive correlations were detected among these traits (Table 5). The average of correlation coefficient between grain weight and grain width was greater than that between grain weight and grain length across multienvironments (Table 4). It seemed that grain width had stronger influence on grain weight.

Genetic Diversity

In this study a total of 147 SSR markers distributed on all seven chromosomes were screened to evaluate the panel diversity, with 19 markers on the chromosome 1H, 28 on 2H, 14 on 3H, 20 on 4H, 29 on 5H, 14 on 6H and 23 on 7H. Most of the loci detected for the SSR markers were distributed on short and long chromosome arm uniformly, except that 16 out of 20 loci were clustered on the long arm of chromosome 4H. Diversity statistics calculated for polymorphic locus were summarized in Supplementary Table 2. The total number of alleles ranged from 1 to 15, with an average of 4.5 alleles per locus. The effective number of alleles varied from 1.0 to 11.1, with an average of 2.3. The monomorphic loci, such as GBM1092, GBM1200, EBmac0525, Bmag0023, GBM1470, *GBM1274*, *GBM1404*, Bmag0344, *GBM1115a*, GBM1432, GBM5060a, GBM1326a and Bmac0282, were excluded and the rest ones were selected for further AM analysis. For the left 134 loci, PIC value was estimated from 0.0177 to 0.9086 (Bmag0323). The average PIC values of the seven chromosomes ranged from 0.3883 (6H) to 0.5265 (4H) (Fig. 5).

Population Structure

The model-based Bayesian clustering showed that the average Ln[P(D)] (log-probability of data) value increased continuously with *K* increasing from 1 to 11, and the most apparent inflection was obtained when *K* was 2 (Fig. 6). The result of subgroup numbers (*K*) was further inferred using ΔK estimation, and the maximum peak value of ΔK was also obtained at *K*=2 (Fig. 1). Thus, the panel of 112 barley accessions was divided into two distinct subgroups using model-based Bayesian clustering. Interestingly, principal component analysis strong supported the similar result that the first subgroup accessions mostly originated from East Asia (Fig. 2), in which all of them are hull-less barley, while the second subgroup accessions were mostly from North America (Fig. 2), in which most of them are hulled barley except for the accessions WAS3, LDLQK, MZQK, B3034

Table 3: Phenotypic distribution and heritability of grain weight, grain length and grain width in the AM panel

Trait	Trial	Mean \pm S.E.	Range		Asymp. Sig	$h^{a} h^{2}_{m} (\%)$
			Max	Min		
TGW (g)	CD2014	27.9±0.5	41.6	13.5	0.887	83.6
	CD2015	29.1±0.5	45.4	17.9	0.949	
	NC2015	28.7±0.6	43.6	14.5	0.593	
GL (mm)	CD2014	6.42 ± 0.07	8.03	4.82	0.998	70.7
	CD2015	6.45 ± 0.07	8.06	4.56	0.852	
	NC2015	6.88 ± 0.07	8.76	4.99	0.817	
GW (mm)	CD2014	2.59 ± 0.03	3.21	1.57	0.636	69.9
	CD2015	2.84 ± 0.03	3.44	2.02	0.983	
	NC2015	2.82 ± 0.03	3.51	1.94	0.933	

TGW, grain weight; GL grain length; GW, grain width

^aTwo-tail and Kolmogorov-Smirnov test for normal distribution

 Table 4: ANOVA analyses of grain weight, grain length and grain width in multi-environment trials

Trait	Source of variation	DF	MS	MS % ^a
TGW	Genotype (G)	111	146.44**	53.92
	Environment (E)	2	87.22**	32.12
	GEI	222	37.90**	13.96
GL	Genotype (G)	111	1.55**	8.89
	Environment (E)	2	15.00**	86.53
	GEI	222	0.85**	4.86
GW	Genotype (G)	111	0.29**	5.94
	Environment (E)	2	4.36**	90.92
	GEI	222	0.15**	3.15

TGW, grain weight; GL grain length; GW, grain width

**indicate significant difference at P<0.01

^aMS%=100% x MS_(G, E or GEI)/(MS_G+MS_E+MS_{GEI})

 Table 5: Correlation coefficients among grain weight,
 grain length and grain width in different trials

Traits	Grain length	Grain width	
Grain weight	0.599**	0.588**	
-	0.378**	0.523**	
	0.264**	0.687**	
Grain lenth		0.673**	
		0.579**	
		0.581**	

[¶]For each trait, the correlation coefficients from CD2014, CD2015 and NC2015 are represented in the first, second and third rows, respectively

**indicate significance at P<0.01

and Tibetannia. All of genotypes in the first subgroup are six-row barley except accession "K5", while most of two-row barleys are clustered into the second subgroup of North America.

Association Mapping

Marker-trait associations were identified using the Q+K model. A significant QTL was declared when the P value for marker-trait association was less than 0.01 [-Log₁₀ (P) =2] in the QTL regions. A total of 11 QTLs were detected for three traits investigated in this study across three environments (Table 6).

Table 6	: Markers	showing	significant	association	with	grain	weight,	grain	length	and	grain	width	in	mixed	linear
model (Q+K)														

Trait	Locus	Chr.	Pos. (cM)	C	D2014	C	CD2015	N	C2015
				-Log ₁₀ (P)	$R^{2}(\%)$	$-Log_{10}(P)$	$R^{2}(\%)$	-Log ₁₀ (P)	$R^{2}(\%)$
Grain weight	Bmag0579	1HL	132.84	2.1	2.71	-	-	-	-
	scssr08238	1HL	139.81	2.2	2.75	-	-	-	-
	scssr10226	2HS	46.63	-	-	-	-	2.0	2.73
	GBM1468	2HL	84.06	-	-	-	-	2.5	4.16
	GBM1408	2HL	89.44	-	-	-	-	2.1	2.76
	GBM5028	5HS	27.41	2.4	2.60	2.8	2.08	-	-
	GBM1215	6HS	39.54	3.3	4.80	2.3	1.86	-	-
Grain length	HVMLOH1A	4HL	102.27	-	-	2.2	4.17	-	-
	GBM5028	5HS	27.41	-	-	-	-	2.1	2.25
	GBM1215	6HS	39.54	4.9	4.49	-	-	-	-
	GBM1456	7HL	136.79	-	-	-	-	2.0	2.05
Grain width	scssr10226	2HS	46.63	-	-	2.3	5.82	2.1	3.26
	GBM1468	2HL	84.06	-	-	2.0	5.67	-	-

Fig. 1: The best possible subgroup number for 112 spring barley accessions using ΔK approaches

Fig. 2: Scatter plot of principal component 1 (PC1) drawn against principal component 2 (PC2). Each triangle or dot sign indicates an individual genotype in different subgroups of the AM panel. East Asia and North America accessions are represented by triangles and dots, respectively

Grain Weight

A total of five QTLs associated with seven markers were detected on chromosome arms 1HL, 2HS, 2HL, 5HS and 6HS in this study (Table 6; Fig. 3a). On 1HL, two SSR loci

Fig. 3: Association mapping of 112 barley genotypes using the MLM for (a) grain weight, (b) grain length and (c) grain width. The P values were converted into $[-Log_{10}(P)]$

Bmag0579 and scssr08238 were significantly associated with grain weight in the CD2014 environment, and the genetic distance between these two loci was 6.97cM with the value of the linkage disequilibrium (D') between them was 0.85, indicating that they were located on the same QTL region with the most significant locus scssr08238 (Table 6; Fig. 3a). On 2HL, two loci were detected to be significantly associated with grain weight in the trail of NC2015 within 5.38 cM region (Table 6). The most significant locus was GBM1468, and thus the QTL was designated as QTgw-GBM1468. The QTL on chromosome 2HS was prominent in NC2015 environment, whereas QTLs on chromosomes 5HS linked with locus GBM5028 and 6HS linked with locus GBM1215 were stable detected in both CD2014 and CD2015 environments. None of QTLs was significant in all three trials and all associated markers

explained just a small portion of the phenotypic variation, ranging from 1.86% to 5.82%, as expected for complex polygenic trait.

Grain Length

Four QTLs were found to be significantly associated with grain length (Table 6; Fig. 3b). The QTL linked with *GBM1215* locus located on chromosome 6HS had the strongest associations and explained 4.49% of the phenotypic variation. Moreover, this QTL had the highest [- Log_{10} (P)] in our study (Table 6; Fig. 3b). Four QTLs related to grain length were detected only in a single environment and also explained just a small portion of the phenotypic variation (Table 6; Fig. 3b).

Grain Width

Two QTLs on chromosome 2H were identified for grain width (Table 6; Fig. 3c). One QTL associated with locus *scssr10226* explained 3.26% and 5.82% of the phenotypic variation in NC2015 and CD2015 environment, respectively. Another one linked with locus *GBM1468* explained 5.67% of the phenotypic variation and was detected only in CD2015 environment (Table 6; Fig. 3c).

Phenotypic Effects of Major Alleles

Among these QTLs for investigated traits, three QTLs for grain weight and width stably expressed in two environments and one QTL for grain length with the highest [-Log₁₀ (P)] (Table 6) were selected to evaluate phenotypic effects of their major alleles. At the locus of GBM5028 associated with grain weight, a total of two major alleles A1 and A2 were observed and the representative accessions for them were DLH (accession code: 5) and 9516 (accession code: 4) (Table 1), respectively. Accessions carrying A2 allele produced significantly lower grain weight in CD2014 environment, which decreased about 2.5 g of TGW (Fig. 4a). Among the three major alleles at the locus of GBM1215 associated with grain weight, the allele of A4 increased the average of 3.5 g of TGW significantly, while A3 decreased the TGW significantly (Fig. 4a). GBM1215 was associated with grain length significantly. Among the three detected alleles, A3 decreased grain length significantly in both the trials of CD2014 and NC2015, A4 increased grain length significantly in the trials of CD2014, while the allele A5 was associated with opposite effects in CD2014 and NC2015 (Fig. 4b). At the locus of scssr10226 associated with grain width, the allele A3 produced significantly narrower grains, while A1 was significantly associated with increased grain width (Fig. 4c).

Discussion

In our study, a total of five QTLs were significantly associated with grain weight. The QTL linked to *scssr10226*

Fig. 4: Phenotypic effect of the major alleles at SSR loci associated with (a) grain weight, (b) grain length and (c) grain width in the trials of CD2014, CD2015 and NC2015. Representative accession code (RAC). *, ** mean significance of phenotypic effect of the major allele at the 0.05 and 0.01 level when comparing with 'null alleles', respectively

Fig. 5: Average PIC value of each chromosome in the panel of 112 barley genotypes

on the chromosome 2HS in this study is consistent with several reported QTLs, such as QTLs in the interval of *HVM36-GMS3* (Pillen *et al.*, 2003; Korff *et al.*, 2006) and *GBM1214* related to grain weight with [-Log₁₀ (P)] score more than 10 (Mikolajczak *et al.*, 2016), while *scssr10226* is tightly linked to *GBM1214* and *GMS3* based on the comparisons of genetic maps reported by Korff *et al.* (2004) and Varshney *et al.* (2007). The significant QTL *QTgw-GBM1468* identified in this study on 2HL corresponded to the QTL identified by Li *et al.* (2005) and Bauer *et al.* (2009), and the QTL on chromosome 5HS in our study is in the similar genetic position to that reported by Saal *et al.* (2011). In addition, few QTLs are reported around the interval of *QTgw-scssr08238* on chromosome 1H.

Fig. 6: Scatter plot of LnP(D) (Log probability of data), averaged over ten replications drawn against *K*. apparent inflection found at K=2

Fig. 7: Association mapping for row type on chromosome 2H of barley. Markers in bold indicates the interval most significantly related to row type

Among the four QTLs for grain length, the QTL on the long arm of chromosome 7H is similar in position to that report by Walker *et al.* (2013). Nevertheless, the others detected in this study seem to be different from previous reports (Backes *et al.*, 1995; Ayoub *et al.*, 2002; Walker *et al.*, 2013; Zhou *et al.*, 2016). For the two QTLs related to grain width on chromosome 2H, one linked to the locus *GBM1468* that is also significantly associated with row type (Fig. 7) is nearby locus *Vrs1* (Varshney *et al.*, 2007; Huang and Wu, 2011), which determines barley row type that is associated with kernel size, as QTLs associated with grain shape and weight have been detected in the interval of HVBKASI-Vrs1 (Marquezcedillo *et al.*, 2001; Ayoub *et al.*, 2002).

In our study, grain weight was highly positively correlated with grain length and grain width. Correlations between them partially explained the phenomenon of QTL clustering in some chromosome regions, as half of QTLs for gain length and width were co-localized with QTLs for grain weight (Table 6; Fig. 3), suggesting that grain weight was jointly influenced by both grain length and width. Walker et al. (2013) also reported that grain weight was often positively related to grain width and QTL cluster was found for both of them. However, for the grain length, grain weight was not always highly or positively correlated with it (Backes et al., 1995; Schnaithmann and Pillen, 2013). In this study, grain width was significantly positively correlated with grain length, but no QTL cluster was detected for them, indicating that grain width and grain length may be independent traits in genetic basis and the correlation between them is mostly caused by artificial selection, and this also happened in barley reported by Schnaithmann and Pillen (2013) and in wheat reported by Gegas et al. (2010).

For the SSR locus GBMS5028 associated with grain weight and grain length, YABBY gene family containing FAS gene (Cong et al., 2008) and YAB1, CRC, DL and INO genes (Han et al., 2015) which played important roles in the development of leaf, flower, and fruit in tomato was found be tightly linked to it (http://webblast.ipkto gatersleben.de/barley/; http://www.ncib.nlm.nih.gov/). GBM1408 associated with grain weight was linked to gene homologous to 1-aminocyclopropane-1that was carboxylate (ACC) synthase gene, which regulates a number of plant processes, ranging from seed germination to organ senescence (Bleecker and Kende, 2000). For GBM1456 locus related to grain width, its linked gene GDSL esterase/lipase belonged to the α/β hydrolase fold superfamily of proteins, regulating coleoptile elongation in rice as GDSL-containing enzyme rice 1 gene (GER1) (Riemann et al., 2007). Actually, the SSR primers for GBM1456 were developed from the sequence of GDSL esterases/lipases gene (http://wheat.pw.usda.gov/).

For complex quantitative traits, QTLs identified by AM often explains smaller percentage of the phenotypic variation than using bi-parental mapping (Massman *et al.*, 2011; Zhou and Steffenson, 2013; Zhou *et al.*, 2014). In this study, the detected QTLs for grain size related traits explained no more than 6% of the phenotypic variation, which are probably caused by (1) artificial selection in cultivated germplasm pool used in our study which fixing that larger-effect QTL/gene more rapidly under the process of domestication or breeding, and (2) insufficient marker density in this study (Massman *et al.*, 2011; Zhou and Steffenson, 2013).

Comparison of phenotypic effects between different QTL alleles from different germplasms is useful for breeders to choose suitable parental lines. For instance, at the site of *GBM1215* associated with grain weight, if using parental lines only containing A3 and A5 alleles to construct bi-parental QTL mapping population, QTL allele of A5 would be favor QTL allele increasing grain weight. Actually, A4 was the most interesting QTL allele for enhancing grain weight.

In conclusion, we identified eleven QTLs including five for grain weight, four for grain length and two for grain width and elite alleles improving these traits at these QTLs loci. Several QTLs identified had similar genetic regions to previous reported indicating that these QTLs might be useful for enhancing grain weight, length and width in barley breeding program.

Acknowledgments

This work was supported by Agriculture Research System in China (Grant No.: CRAS-05). We are very grateful to J. Yuan, Y. Dong and Y. Huang for conducting the field experiments.

References

- Ayoub, M., S.J. Symons, M.J. Edney and D.E. Mather, 2002. QTLs affecting kernel size and shape in a two-rowed by six-rowed barley cross. *Theor. Appl. Genet.* 105: 237–247
- Backes, G., A. Graner, B. Foroughi-Wehr, G. Fischbeck, G. Wenzel and A. Jahoor, 1995. Localization of quantitative trait loci (QTL) for agronomic important characters by the use of a RFLP map in barley (*Hordeum vulgare* L.). *Theor. Appl. Genet.*, 90: 294–302
- Bauer, A.M., F. Hoti, K.M. Von, K. Pillen, J. Léon and M.J. Sillanpää, 2009. Advanced backcross-QTL analysis in spring barley (*H.vulgare* ssp. spontaneum) comparing a REML versus a Bayesian model in muti-environmental field trials. *Theor. Appl. Genet.*, 119: 105–123
- Bezant, J., D. Laurie, N. Pratchett, J. Chojecki and M. Kearsey, 1997. Mapping QTL controlling yield and yield components in a spring barley (*Hordeum vulgare* L.) cross using marker regression. *Mol. Breed.*, 3: 29–38
- Bleecker, A.B. and H. Kende, 2000. Ethylene: a gaseous signal molecule in plants. Annu. Rev. Cell Dev. Biol., 16: 1–18
- Bradbury, P.J., Z. Zhang, D.E. Kroon, T.M. Casstevens, Y. Ramdoss and E.S. Buckler, 2007. TASSEL: software for association mapping of complex traits in diverse samples. *Bioinformatics*, 23: 2633–2635
- Breseghello, F. and M.E. Sorrells, 2006a. Association analysis as a strategy for improvement of quantitative traits in plants. *Crop Sci.*, 46: 1323– 1330
- Breseghello, F. and M.E. Sorrells, 2006b. Association mapping of kernel size and milling quality in wheat (*Triticum aestivum* L.) cultivars. *Genetics*, 172: 1165–1177
- Cong, B., L.S. Barrero and S.D. Tanksley, 2008. Regulatory change in YABBY-like transcription factor led to evolution of extreme fruit size during tomato domestication. *Nat. Genet.*, 40: 800–804
- Dai, F., E. Nevo, D. Wu, J. Comadran, M. Zhou, L. Qiu, Z. Chen, A. Beiles, G. Chen and G. Zhang, 2012. Tibet is one of the centers of domestication of cultivated barley. *PNAS*, 109: 16969–16973

- Evanno, G., S. Regnaut and J. Goudet, 2005. Detecting the number of clusters of individuals using the software STRUCTURE: a simulation study. *Mol. Ecol.*, 14: 2611–2620
- Feng, Z.Y., L.L. Zhang, Y.Z. Zhang and H.Q. Ling, 2006a. Genetic diversity and geographical differentiation of cultivated six-rowed naked barley landraces from the Qinghai-Tibet plateau of China detected by SSR analysis. *Genet. Mol. Biol.*, 29: 330–338
- Feng, Z.Y., X.J. Liu, Y.Z. Zhang and H.Q. Ling, 2006b. Genetic diversity analysis of Tibetan wild barley using SSR markers. Acta. Genet. Sin., 33: 917–928
- Flint-Garcia, S.A., J.M. Thornsberry and B.E. Th, 2003. Structure of linkage disequilibrium in plants. Annu. Rev. Plant. Biol., 54: 357–374
- Gegas, V.C., A. Nazari, S. Griffiths, J. Simmonds, L. Fish, S. Orford, L. Sayers, J.H. Doonan and J.W. Snape, 2010. A genetic framework for grain size and shape variation in wheat. *Plant Cell.*, 22: 1046–1056
- Gupta, P.K., S. Rustgi and P.L. Kulwal, 2005. Linkage disequilibrium and association studies in higher plants: present status and future prospects. *Plant Mol. Biol.*, 57: 461–485
- Hadjichristodoulou, A., 1990. Stability of 1000-grain weight and its relation with other traits of barley in dry areas. *Euphytica*, 51: 11–17
- Han, H.Q., Y. Liu, M.M. Jiang, H.Y. Ge and H.Y. Chen, 2015. Identification and expression analysis of YABBY family genes associated with fruit shape in tomato (*Solanum lycopersicum* L.). *Genet. Mol. Res.*, 14: 7079–7091
- Huang, B.G. and W.R. Wu, 2011. Mapping of mutant gene prbs controlling poly-row-and-branched spike in barley (Hordeum vulgare L.). J. Interg. Agric., 10: 1501–1505
- Irfan, M., T.T. Zhang, Y. Wang, C. Zhang, Q. Miao, L. Zhang and F. Lin, 2013. Modification of CTAB protocol for maize genomic DNA extraction. *Res. J. Biotechnol.*, 8: 41–45
- Kjaer, B. and J. Jensen, 1996. Quantitative trait loci for grain yield and yield components in a cross between a six-rowed and a two-rowed barley. *Euphytica*, 90: 39–48
- Korff, M.V., H. Wang, J. Léon and K. Pillen, 2004. Development of candidate introgression lines using an exotic barley accession (*Hordeum vulgare ssp. spontaneum*) as donor. *Theor. Appl. Genet.*, 109: 1736–1745
- Korff, M.V., H. Wang, J. Léon and K. Pillen, 2006. AB-QTL analysis in spring barley: II. Detection of favourable exotic alleles for agronomic traits introgressed from wild barley (*H. vulgare ssp. spontaneum*). *Theor. Appl. Genet.* 112: 1221–1231
- Kulwal, P., G. Ishikawa, D. Benscher, Z. Feng, L.X. Yu, A. Jadhav, S. Mehetre and M.E. Sorrells, 2012. Association mapping for preharvest sprouting resistance in white winter wheat. *Theor. Appl. Genet.*, 125: 793–805
- Li, J.Z., X.Q. Huang, F. Heinrichs, M.W. Ganal and M.S. Röder, 2005. Analysis of QTLs for yield, yield components, and malting quality in a BC₃-DH population of spring barley. *Theor. Appl. Genet.*, 110: 356–363
- Liu, K. and S.V. Muse, 2005. POWERMARKER: integrated analysis environment for genetic marker data. *Bioinformatics*, 21: 2128–2129
- Locatelli, A., A. Cuestamarcos, L. Gutiérrez, P.M. Hayes, K.P. Smith and A.J. Castro, 2013. Genome-wide association mapping of agronomic traits in relevant barley germplasm in Uruguay. *Mol. Breed.*, 31: 631–654
- Long, N.V., O. Dolstra, M. Malosetti, B. Kilian, A. Graner, R.G. Visser and C.G. Linden, 2013. Association mapping of salt tolerance in barley (*Hordeum vulgare* L.). *Theor. Appl. Genet.*, 126: 2335–2351
- Marquezcedillo, L.A., P.M. Hayes, A. Kleinhofs, W.G. Legge, B.G. Rossnagel, K. Sato, S.E. Ullrich and D.M. Wesenberg, 2001. QTL analysis of agronomic traits in barley based on the doubled haploid progeny of two elite North American varieties representing different germplasm groups. *Theor. Appl. Genet.*, 103: 625–637
- Matthies, I.E., T.V. Hintum, S. Weise and M.S. Röder, 2012. Population structure revealed by different marker types (SSR or DArT) has an impact on the results of genome-wide association mapping in European barley cultivars. *Mol. Breed.*, 30: 951–966
- Maurer, A., V. Draba and K. Pillen, 2016. Genomic dissection of plant development and its impact on thousand grain weight in barley through nested association mapping. J. Exp. Bot., 67: 2507–2518

- Massman, J., B. Cooper, R. Horsley, S. Neate, R. Dill-Macky, S. Chao, Y. Dong, P. Schwarz, G.J. Muehlbauer and K.P. Smith, 2011. Genome-wide association mapping of Fusarium head blight resistance in contemporary barley breeding germplasm. *Mol. Breed.*, 27: 439–454
- Mikolajczak, K., P. Ogrodowicz, K. Gudyś, K. Krystkowiak, A. Sawikowska, W. Frohmberg, A. Górny, A. Kedziora, J. Jankowiak, D. Józefczyk, G. Karg, J. Andrusiak, P. Krajewski, I. Szarejko, M. Surma, T. Adamski, J. Guzy-Wróbelska and A. Kuczyńska, 2016. Quantitative trait loci for yield and yield-related traits in spring barley populations derived from crosses between European and Syrian cultivars. *Plos One*, 11: 1–26
- Passarella, V.S., R. Savin and G.A. Slafer, 2005. Breeding effects on sensitivity of barley grain weight and quality to events of high temperature during grain filling. *Euphytica*, 141: 41–48
- Pillen, K., A. Zacharias and J. Léon, 2003. Advanced backcross QTL analysis in barley (Hordeum vulgare L.). Theor. Appl. Genet., 107: 340–352
- Pritchard, J.K., M. Stephens and P. Donnelly, 2000. Inference of population structure using multilocus genotype data. *Genetics*, 155: 945–959
- Rasheed, A., X. Xia, F. Ogbonnaya, T. Mahmood, Z. Zhang, A. Mujeeb-Kazi and Z. He, 2014. Genome-wide association for grain morphology in synthetic hexaploid wheats using digital imaging analysis. *BMC Plant Biol.*, 14: 1–21
- Riemann, M., C. Gutjahr, A. Korte, M. Riemann, B. Danger, T. Muramatsu, U. Bayer, F. Waller, M. Furuya and P. Nick, 2007. GER1, a GDSL motif-encoding gene from rice is a novel early light- and jasmonateinduced gene. *Plant Biol.*, 9: 32–40
- Royo, C., M. Abaza, R. Blanco and D.M.L.F. García, 2000. Triticale grain growth and morphometry as affected by drought stress, late sowing and simulated drought stress. *Funct. Plant Biol.*, 27:1051–1059
- Saal, B., M.V. Korff, J. Léon and K. Pillen, 2011. Advanced-backcross QTL analysis in spring barley: IV. Localization of QTL × nitrogen interaction effects for yield-related traits. *Euphytica*, 177: 223–239
- Schnaithmann, F. and K. Pillen, 2013. Detection of exotic QTLs controlling nitrogen stress tolerance among wild barley introgression lines. *Euphytica*, 189: 67–88
- Sun, L., D. Ma, H. Yu, F. Zhou, Y. Li, L. Luo, G. Gao, Q. Zhang, C. Xu and Y. He, 2013. Identification of quantitative trait loci for grain size and the contributions of major grain-size QTLs to grain weight in rice. *Mol. Breed.*, 31: 451–461
- Szücs, P., V.C. Blake, P.R. Bhat, S. Chao, T.J. Close, A. Cuesta-Marcos, G.J. Muehlbauer, L. Ramsay, R. Waugh and P.M. Hayes, 2009. An integrated resource for barley linkage map and malting quality QTL alignment. *Plant Genom.*, 2: 134–140
- Tinker, N.A., D.E. Mather, B.G. Rossnagel, K.J. Kasha, A. Kleinhofs, P.M. Hayes, D.E. Falk, T. Ferguson, L.P. Shugar, W.G. Legge, R.B. Irvine, T.M. Choo, K.G. Briggs, S.E. Ullrich, J.D. Franckowiak, T.K. Blake, R.J. Graf, S.M. Dofing, M.A. Saghai Maroof, G.J. Scoles, D. Hoffman, L.S. Dahleen, A. Kilian, F. Chen, R.M. Biyashev, D.A. Kudrna and B.J. Steffenson, 1996. Regions of the genome that affect agronomic performance in two-row barley. *Crop Sci.*, 36: 1053–1062
- Varshney, R.K., T.C. Marcel, L. Ramsay, J. Russell, M.S. Röder, N. Stein, R. Waugh, P. Langridge, R.E. Niks and A. Graner, 2007. A high density barley microsatellite consensus map with 775 SSR loci. *Theor. Appl. Genet.*, 114: 1091–1103

- Virender, S. and G.P. Zhang, 2003. Important quality attributes of malt barley (*Hordeum vulgare* L.): effect of genetics, environments and agronomic factors. J. Interg. Agric., 2: 815–824
- Walker, C.K., R. Ford, M. Muñoz-Amatriaín and J.F. Panozzo, 2013. The detection of QTLs in barley associated with endosperm hardness, grain density, grain size and malting quality using rapid phenotyping tools. *Theor. Appl. Genet.*, 126: 2533–2551
- Wallwork, M.A.B, C.F. Jenner, S.J. Logue and M. Sedgley, 1998. Effect of high temperature during grain-filling on the structure of developing and malted barley grains. *Ann. Bot.*, 82: 587–599
- Wang, J., G. Sun, X. Ren, C. Li, L. Liu, Q. Wang, B. Du and D. Sun, 2016. QTL underlying some agronomic traits in barley detected by SNP markers. *BMC Genet.*, 17: 1–13
- Wenzel, A., T. Frank, G. Reichenberger, M. Herz and K.H. Engel, 2015. Impact of induced drought stress on the metabolite profiles of barely grain. *Metabolomics*, 11: 454–467
- Worch, S., K. Rajesh, V.T. Harshavardhan, C. Pietsch, V. Korzun, L. Kuntze, A. Börner, U. Wobus, M.S. Röder and N. Sreenivasulu, 2011. Haplotyping, linkage mapping and expression analysis of barley genes regulated by terminal drought stress influencing seed quality. *BMC Plant Biol.*, 11: 1–14
- Xing, Y. and Q. Zhang, 2010. Genetic and molecular basis of rice yield. Annu. Rev. Plant Biol., 61: 421–442
- Yan, L., A. Loukoianov, A. Blechl, G. Tranquilli, W. Ramakrishna, P. SanMiguel, J.L. Bennetzen, V. Echenique and J. Dubcovsky, 2004. The wheat VRN2 gene is a flowering repressor down-regulated by vernalization. *Science*, 303: 1640–1644
- Yeh, F.C. and T. Boyle, 1999. *POPGENE Version 1.32*. The user-friendly software for population genetic analysis. University of Alberta and CIFOR, Calgary
- Yu, J., G. Pressoir, W.H. Briggs, I.V. Bi, M. Yamasaki, J.F. Doebley, M.D. McMullen, B.S. Gaut, D.M. Nielsen, J.B. Holland, S. Kresovich and E.S. Buckler, 2006. A unified mixed-model method for association mapping that accounts for multiple levels of relatedness. *Nat. Genet.*, 38: 203–208
- Zhou, H., B.J. Steffenson, G. Muehlbauer, R. Wanyera, P. Njau and S. Ndeda, 2014. Association mapping of stem rust race TTKSK resistance in US barley breeding germplasm. *Theor. Appl. Genet.*, 127: 1293–1304
- Zhou, H. and B. Steffenson, 2013. Genome-wide association mapping reveals genetic architecture of durable spot blotch resistance in US barley breeding germplasm. *Mol. Breed.*, 32: 139–154
- Zhou, H., S. Liu, Y. Liu, Y. Liu, J. You, M. Deng, J. Ma, G. Chen, Y. Wei, C. Liu and Y. Zheng, 2016. Mapping and validation of major quantitative trait loci for kernel length in wild barley (*Hordeum* vulgare ssp. spontaneum). BMC Genet., 17: 1–9
- Ziems, L.A., L.T. Hickey, C.H. Hunt, E.S. Mace, G.J. Platz, J.D. Franckowiak and D.R. Jordan, 2014. Association mapping of resistance to Puccinia hordei in Australian barley breeding germplasm. *Theor. Appl. Genet.*, 127: 1199–1212

(Received 09 February 2017; Accepted 07 June 2017)