Evaluation of Salt Tolerance Based on Morphological and Yield Traits in Wheat Cultivars and Mutants

Ali Akbar AsADI ${ }^{1}$ and Behnam NASERIAN Khiabani
Science and Technology Research Institute (NSTRI) and Agriculture, Medicine and Industry Research School, Karaj, Iran
${ }^{1}$ Corresponding author’s e-mail: paris23252002@yahoo.com; bnkhiabani@yahoo.com

Abstract

To evaluate yield and salinity tolerance of twenty-five wheat cultivars and mutants, an experiment in partially balanced lattice design (5×5) was conducted with two replications and under two conditions at two field locations. Significant differences were observed in plant height, flag leaf node until spike distance, grain length, 1000 grain weight, harvest index and hectoliter weight under normal condition. Likewise under salinity, significant differences were observed for flag leaf area, number of fertile tiller, plant height, spike length, flag leaf node unit spike distance, number of grain per plant, 1000 grain weight and hectoliter weight. Salinity decreased many of traits in mutants as well as cultivars. T-66-58-6 (mutant of Tabassi) showed yield stability across normal and saline conditions. Path, stepwise regression and multiple regression analysis indicated that biomass and harvest index had positive direct effect on yield for yield components under either condition.

Key Words: Salinity; Wheat; Mutant; Selection method; Statistical analysis

INTRODUCTION

About 25% of the world and 15% of the Iran's total land are saline (Kamkar et al., 2004). Soil salinity above 4.5 $\mathrm{dS} \mathrm{m}^{-1}$ decreases the percent of plants established per unit area. At $8.8 \mathrm{dS} \mathrm{m}^{-1}$, yield of emerged wheat decreased to 50\% (Francois et al., 1986). Soil salinity affects plant growth in three ways: (a) osmotic stress decreasing water availability, (b) ionic stress and (c) changes in the cellular ionic balance. Salinity affects in the formation and viability of reproductive organs. In cereal, it reduces the numbers of florets per ear and alters the time of flowering and maturity (Munns \& Rawson, 1999). It is known that wheat genotypes respond differentially to salinity (Singh \& Rana, 1984), which necessitates the identification of high yielding stable varieties under saline conditions. The agronomic and physiological traits may be important, not only to be used as quick and easy screening criteria if they are closely associated to grain yield (Noble \& Rogers, 1992; Munns \& James, 2003) but also improves the salt tolerance. Nonetheless, this needs a better understanding of salt tolerance mechanisms of wheat genotypes.

Some researchers have pointed out that selection of high wheat yield cultivars could be the best strategy to obtain satisfactory yields in saline condition, due to the spatial heterogeneity of salt distribution in the soil, which would allow expression of the yield potential in some plants growing in areas with lower salinity (Richards et al., 1981). The aims of the present study were: (1) comparison of twenty-five wheat cultivars and mutants, regarding their morphological traits and yield component, to obtain maximum grain yield in saline and normal conditions and (2) determination of morphological and yield components effects on grain yield of 1 m row in two conditions, using path and regression analysis.

MATERIALS AND METHODS

The experiments was conducted in farm with saline soil and water in region Aktharabad also the same experiments was conducted in normal condition in experimented farm in Science and Technology Research Institute (NSTRI) Agriculture, Medicine and Industry Research School, Karaj and Akhtarabad farm of Mahdasht, Karaj-Iran during the crop season 2005 - 06.
Plant materials. The experiments included 9 wheat cultivars and 16 wheat mutants. The pedigree and characteristics of these cultivars and mutants was as follows: Bezostaia has medium height, tolerance to lodging, small awns and has high vigor in cold condition- Inia is earliness and has tolerance to lodging, medium height and has high backing quality - Tajan garm was largely sown in north of Iran - Tajan was largely sown in north of Iran and show highyield potential- Azadi show medium height, high awns, Pishtaz was sown in drought environments - Omid has awns, complete lodging, high height and has performed well in north of Iran - Tabassi has complete lodging, high height - (O-64-4/Omid) is dwarf and earliness - (O-64-1-1/Omid) is dwarf and earliness - (T-66-58-7/Tabassi) has small spike and awns - (T-67-60/Tabassi) show a small spike and lower lodging - (T-65-9-1/Tabassi) is dwarf - (T-65-58-8/Tabassi) show a small spike and lower lodging - (T-65-5-1/Tabassi) show a compact spike and without awns - (T-65-91P/Tabassi) is dwarf and tolerance to lodging - (T-65-71/Tabassi) is dwarf, tolerance to lodging and without awns -(T-65-4/Tabassi) has medium height, without awns - (T-65-58-10/Tabassi) has lodging and awns - (T-65-58-9/Tabassi) has small spike and awns - (T-65-6/Tabassi) show high height and without lodging - (T-66-58-6/Tabassi) has lodging - (T-66-58-60/Tabassi) has high height, awns and great spike - (T-66-58-12/Tabassi) has high height and high
awns and (T-65-9-II/Tabassi) has high height without awns and medium lodging.
Field evaluation. In normal condition the electrical conductivity (EC) of soil used was $0.67 \mathrm{dS} \mathrm{m}^{-1}$ with pH 8.05 and the EC of the water was $0.33 \mathrm{dS} \mathrm{m}^{-1}$ with pH 8.2 and SAR 13. Physico-chemical characteristics of the soil were: 30.6% clay, 36.4% silt and 33% sand. In salinity condition, the EC of water used was $10 \mathrm{dS} \mathrm{m}^{-1}$ with pH 7.7 and SAR 13.78. The soil was composed of 8% clay, 22% silt and 70% sand. Seeding rate was 120 g seeds in plot [$3 \times 0.25 \mathrm{~m}$ (length x w)]. The distance between blocks was 1 m and between replication 3 m . Fertilizer application was at the rate of $50 \mathrm{~kg} \mathrm{NH}_{4} \mathrm{NO}_{3} \mathrm{ha}^{-1}$ and $150 \mathrm{~kg}\left(\mathrm{NH}_{4}\right)_{2} \mathrm{HPO}_{3} \mathrm{ha}^{-1}$ at planting and $100 \mathrm{~kg} \mathrm{NH}_{4} \mathrm{NO}_{3}$ ha $^{-1}$ at stem elongation stage.
Sampling and measurement. The data for flag leaf area (FLA), number of fertile tiller (NT), plant height (PH), fertile spikelet per spike (FSS), spike length (SL), number of node (NN), flag leaf node until spike distance (FLNSD), stem diameter (SD), grain number per spike (GNS), grain weight per spike (GWS), grain number per spike (GNP), grain weight per plant (GWP), grain length (GL), 1000 grain weight (1000 GW), Biomass (B), 1 m row yield (1RY), harvest index (HI) and hectoliter weight (HW) were recorded for each experimental unit. At maturity, one of three central rows was harvested to record grain yield in 1 m of each cultivar and mutant. The data for flag leaf area was measured by leaf area meter (Model AM100). Harvest index was obtained by converting of total dry matter in economic yield (grain yield). Hectoliter weight was equivalent of 200 mL seeds.
Statistical analysis. Analysis of variance was done and observation, were compared by using of Duncan multiple Rang test (Duncan, 1955). Coefficient of correlation, parameters of linear regression and stepwise regression were calculated using mean values of characters from two conditions. Direct and indirect effects of component
characters (morphological \& yield) on yield of 1 m row were worked out using path coefficient analysis. Stepwise and multiple regression analysis was used to find of important characters contributing to yield in 1 m row. Statistical analysis obtained using of statistical analysis system (SAS institute Release, 6. 12) and MSTATC program.

For evaluating of salinity tolerance stress susceptibility index was calculated as follows:

$$
\begin{aligned}
& \text { SSI = [1-(Ydi/Ypi)/SI }]=\text { YD/YP } \\
& \text { SSI = Stress Susceptibility Index } \\
& \text { SI = Stress Intensity } \\
& \text { YD = Yield average under stress } \\
& \text { YP = Yield average under normal condition } \\
& \text { Ydi = Yield of each genotype under stress } \\
& \text { Ypi = Yield of each genotype under normal condition. }
\end{aligned}
$$

RESULTS

Flag leaf area. All the cultivars and mutants showed significant differences for flag leaf area ($\mathrm{P}<0.01$) under both the conditions (Table I). In normal condition, the maximum flag leaf area was observed in Bezostaia, T-65-71, T-66-58-60 and Azadi, whereas in salinity stress condition the maximum flag leaf area was observed in T-66-58-8, T-66-58-9, T-66-58-12, Omid and Bezostaia (Table II).
Number of fertile tillers. Number fertile tiller differed significantly ($\mathrm{P}<0.05$) in all of cultivars and mutants under two conditions (Table I). In normal condition maximum number of fertile tiller was produced by T-67-60, T-65-4 and T-65-6, whereas in salinity condition Omid and T-66-58-12 could produce maximum of fertile tiller. The number of tillers, obviously, influenced the reaction to salt stress. Plants with a high number of tillers, in the control treatment, tended to show more sensitive reaction under salt stress condition. In normal condition, T-67-60, T-65-4 and T-65-6 were produced maximum fertile tiller, but under salinity stress condition, these mutants produced lower fertile tiller.

Table I. Analysis of variance for morphological and yield treats under normal and salinity condition

	MST		$\bar{X} \pm$ SD		MSE		CV\%		LSD	
	Normal	Salinity								
FLA	165131.06 ns	130637.17**	1973 ± 118.61	1348.88 ± 105.5	121579.52	31198	17.67	13.09	739.17	374.43
NFT	$1.99{ }^{\text {ns }}$	1.39 *	5.2 ± 0.41	3.69 ± 0.34	2.46	0.51	30.15	19.31	3.24	1.51
PH	604.3 **	78.42 **	113.8 ± 7.18	68.83 ± 2.58	40.54	15.19	5.6	5.66	13.49	8.26
FSS	$10.01{ }^{\text {ns }}$	$2.86{ }^{\text {ns }}$	15.82 ± 0.92	14.93 ± 0.49	7.73	1.39	17.57	7.9	5.73	2.5
SL	$1.18{ }^{\text {ns }}$	1.31 **	8.89 ± 0.32	8.83 ± 0.33	0.94	0.18	10.9	4.77	2.055	0.89
NN	$0 / 1{ }^{\text {ns }}$	$0.16{ }^{\text {ns }}$	$4.52 \pm .09$	4.08 ± 0.12	0.09	0.09	6.52	7.56	0.62	0.095
FLNSD	61.87 *	$12.62{ }^{\text {ns }}$	40.78 ± 2.3	23.56 ± 1.04	12.69	4.34	8.73	8.85	7.55	2.51
SD	$0.56{ }^{\text {ns }}$	$0.05{ }^{\text {ns }}$	3.06 ± 0.22	2.11 ± 0.06	0.45	0.024	22.01	7.41	1.39	0.33
GNS	$91.71{ }^{\text {ns }}$	$61.37{ }^{\text {ns }}$	33.96 ± 2.79	35.77 ± 2.29	60.25	35.14	22.85	16.57	16.45	12.56
GWS	$0.15{ }^{\text {ns }}$	$0.09{ }^{\text {ns }}$	1.76 ± 0.11	1.28 ± 0.09	0.15	0.1	21.86	25.2	0.81	0.68
GNP	$2104.33{ }^{\text {ns }}$	1720.27 *	143.56 ± 13.39	98.09 ± 12.07	3301.81	584.63	40.02	24.65	118.59	51.26
GWP	$5.71{ }^{\text {ns }}$	$1.67{ }^{\text {ns }}$	7.37 ± 0.7	3. 3 ± 0.383	8.51	1.03	39.54	30.78	6.02	2.16
GL	0.52 **	0.28 *	7.11 ± 0.21	6.76 ± 0.15	0.09	0.14	4.25	5.5	0.62	0.37
1000GW	79.25 **	$44.47{ }^{* *}$	51.24 ± 2.6	34.01 ± 1.95	6.83	10.75	5.1	9.64	5.39	6.95
B	$0.06{ }^{\text {ns }}$	$0.01{ }^{\text {ns }}$	1.13 ± 0.07	0.42 ± 0.03	0.04	0.001	18.11	17.72	0.43	0.16
1MY	$0.01{ }^{\text {ns }}$	$0.001{ }^{\text {ns }}$	0.35 ± 0.03	0.13 ± 0.01	0.005	. 0.001	20.71	22.32	0.15	0.061
HI	20.61*	$32.76{ }^{\text {ns }}$	31.58 ± 1.32	31.09 ± 1.67	9.302	21.41	9.66	14.88	6.46	9.55
HW	7.73*	27.93 **	72.75 ± 0.81	67.37 ± 1.54	3.39	4.52	2.53	3.17	3.799	4.408

FLA : Flag Leaf Area, NFT : Number of Fertile Tiller, PH: Plant Height, FSS: Fertile Spikelet per Spike, SL: Spike Length, NN : Number of Node, FLNSD: Flag Leaf Node Until Spike Distance, SD: Stem Diameter, GNS: Grain Number per Main Spike, GWS : Grain Weight per Main Spike, GNP :Grain Number per Plant, GWP: Grain Weight per Plant, GL : Grain Length, 1000GW: 1000 Grain Weight :, B: Biomass, 1MY : Yield of I m Row, HI : Harvest Index, HW : Hectoliter Weight. LSD: Least Significant Difference in 0.05%, CV: Coefficient of Variation, MSE: Mean Sauare of Error. MST: Mean Sauare of Treat. SD: Standard Deviation. **. * and ns: significant at 0.01. 0.05 and non significant

Plant height and flag leaf node until spike distance. A significant ($\mathrm{P}<0.05$) difference was noted among cultivars and mutants under two conditions for the Plant height and significant ($\mathrm{P}<0.05$) difference was noted among cultivars and mutants under normal conditions (Table I). In normal condition, maximum plant height was recorded in Omid, which signed taller than other cultivars and mutants and for flag leaf node until spike distance, maximum distance was observed in Tabassi and T-65-6. On the other hand, in saline condition Tabassi, Omid and T-66-58-6 were recorded taller than other cultivars and mutants.
Spike length and number of spikelets per spike. The cultivars and mutants showed significant ($\mathrm{P}<0.01$) differences for spike length in saline condition but in normal condition there were no significant differences among cultivars and mutants. For number of spikelets per spike there were not significant differences among cultivars and mutants in two conditions. In normal condition maximum spike length was observed in Omid, O-64-1-1, O-64-4, T-66-58-12, Azadi and T-65-9-1I, whilst under saline condition, Omid had tallest spike length (than other cultivars
\& mutants).
Number of grain per spike and grain per spike weight. There were no significant differences among cultivars and mutants. Under normal condition, Azadi, O-64-4, O-64-1-1 and Pishtaz produced the maximum number of grains per spike weight a long with 66-58-12, while under saline condition Azadi, T-66-58-60, T-66-58-12, O-64-1-1, T-65-$9-1 \mathrm{P}$, and Omid had the maximum of grain per spike than others but for grain per spike weight, T-67-60, T-65-5-1, T-66-58-60, T-66-58-12 and T-6658-9 produced greatest of grain per spike weight.
Number of grain per plant and grain per plant weight. Number of grain per plant in normal condition did not show significant differences but in saline condition significant difference ($\mathrm{P}<0.05$) was noted among cultivars and mutants. All the cultivars and mutants showed no significant differences for grain per plant weight in two conditions (Table I). In normal condition O-64-4-1, T-65-6, T-66-58-9 and T-65-4 produced the maximum number of grain per plant and had greatest grain per plant weight but in saline stress condition Omid, T-65-9-1P, 0-64-9-1 and T-66-58-12

Table II. Mean value of wheat cultivars and mutants and statistical significance for morphological and yield traits in two conditions

	FLA Normal saline		NFT Normal saline		PHNormal saline		FSSNormal saline		SLNormal saline		NNNormal saline		FLNSD Normal saline		SD Normal 3.46	$\frac{\text { saline }}{2.175}$
Bezostaia	2102	1588	4.1	3.814	123.7	63.62	15.8	15.28	8.316	7.777	4.104	4.2	34.62	24.1		
	AB	BCD	A	BCDEFG	BC	EFGHI	B	ABCD	ABC	GH	C	ABCD	B	ABCDEFGH	A	ABCDE
T-66-58-7	1900	1299	6.5	3.717	130.4	74.08	14.9	15.55	8.531	8.349	4.808	4.2	32	25.02	3.2	2.103
	AB	BCDEF	A	BCDEFG	AB	ABCD	B	ABCD	ABC	EFG	ABC	ABCD	B	ABCDEF	AB	ABCDE
T-67-60	1796	1439	6.9	2.962	130.1	71.84	15	16.23	8.617	8.467	4.996	4.2	30.96	25.57	3.1	2.275
	B	BCDE	A	CDEFG	AB	ABCDEF	B	A	ABC	DEFG	A	ABCD	B	ABCDE	ABC	ABCD
T-65-9-1	1957	1101	4.7	3.65	101.1	62.33	13.5	14.96	7.927	8.763	4.64	4.2	23.6	19.05	2.36	1.928
	AB	EFG	A	BCDEFG	EFG	FGHI	B	ABCD	BC	CDEFG	ABC	ABCD	B	H	DEF	DE
Omid	1678	1675	3.4	5.324	141.9	77.93	15.9	14.87	10.66	11.27	4.6	4	26.78	24.16	2.68	2.015
	B	B	A	AB	A	AB	B	ABCD	A	A	ABC	ABCD	B	ABCDEFGH	CDE	BCDE
Inia	1865	1355	5.6	3.735	87.91	58.15	13.3	12.79	8.982	8.909	4.14	3.8	30.76	21.82	3.08	2.085
	AB	BCDEF	A	BCDEFG	GH	I	B	DE	ABC	CDEF	BC	BCD	B	DEFGH	ABC	ABCDE
7T-66-58-8	2010	2071	4.9	3.738	123.3	72.51	16.3	16.07	8.917	8.491	4.844	4.1	34.82	25.23	3.48	2.28
	AB	A	A	BCDEFG	BC	ABCDE	B	AB	ABC	DEFG	AB	ABCD	B	ABCDEF	A	ABCD
T-65-5-1	1780	1497	5.6	2.784	130.4	76.37	15.8	15.44	8.642	8.809	4.532	4.4	30	27.71	3	2.179
	B	BCDE	A	EFG	AB	ABC	B	ABCD	ABC	CDEFG	ABC	AB	B	AB	ABCD	ABCDE
Tajan Garm	1758	777	4.2	3.071	83.49	64.87	14.5	13.28	8.543	9.325	4.376	3.9	27.8	22.93	2.78	2.111
	B	G	A	CDEFG	H	DEFGHI	B	BCDE	ABC	BCDE	ABC	ABCD	B	BCDEFGH	CDE	ABCDE
T-65-9-1p	1582	1237	5.4	4.446	88	60.66	16.2	15.69	8.899	8.706	4.536	4.1	26.64	20.94	2.66	2.015
	B	CDEF	A	ABCDE	GH	GHI	B	ABCD	ABC	CDEFG	ABC	ABCD	B	EFGH	CDE	BCDE
Tabassi	1644	1303	5.2	4.709	130.9	79.69	16	15.48	8.977	8.738	4.388	4.5	26.98	28.58	2.69	1.989
	B	BCDEF	A	ABC	AB	A	B	ABCD	ABC	CDEFG	ABC	AB	B	A	CDE	CDE
T-65-7-1	2323	1459	4.3	2.412	115.9	69.75	13.1	13.15	7.793	8.24	4.592	4.4	27.76	23.95	2.78	1.844
	AB	BCDE	A	FG	BCD	BCDEFG	B	CDE	BC	FGH	ABC	AB	B	ABCDEFGH	CDE	E
T-65-4	1845	1173	6.7	3.157	111.5	71.46	17.2	14.93	9.328	7.968	4.58	4.3	26.54	23.59	2.65	1.981
	B	DEFG	A	CDEFG	CDE	ABCDEF	B	ABCD	ABC	FGH	ABC	ABC	B	ABCDEFGH	CDE	CDE
T-65_58_10	2019	1383	5.6	3.145	119.1	74.26	16	14.96	8.758	8.215	4.724	4.1	52.06	24.35	3.21	2.278
	AB	BCDEF	A	CDEFG	BCD	ABCD	B	ABCD	ABC	FGH	ABC	ABCD	A	ABCDEFG	AB	ABCD
O-64-1-1	1761	1248	6	4.619	94.27	62.8	17.7	15.27	9.964	10.07	4.584	3.6	28.94	23.37	2.89	2.045
	B	BCDEF	A	ABCD	FGH	FGHI	B	ABCD	AB	B	ABC	CD	B	BCDEFGH	CDE	ABCDE
T-66-58-9	1911	1593	6.1	3.585	121	70.89	16.3	15.53	9.129	8.817	4.3	4.4	32.24	22.07	3.22	2.085
	AB	BCD	A	BCDEFG	BCD	ABCDEF	B	ABCD	ABC	CDEF	ABC	AB	B	CDEFGH	AB	ABCDE
Pishtaz	1539	971.9	4.5	2.188	95.02	60.35	16.2	11.5	9.144	7.269	4.504	4	31.32	21.07	3.13	2.074
	B	FG	A	G	FGH	GHI	B	E	ABC	H	ABC	ABCD	B	EFGH	ABC	ABCDE
T-65-6	1805	1376	6.6	2.884	127.3	70.91	15.9	14.78	8.39	8.347	4.492	4	29.36	25.4	2.94	2.372
	B	BCDEF	A	DEFG	AB	ABCDEF	B	ABCD	ABC	EFG	ABC	ABCD	B	ABCDEF	BCD	AB
T-66-58-6	2309	1306	5.4	3.521	129.8	76.6	13.8	16.01	8.73	8.874	4.436	4.1	32.82	26.81	3.28	2.426
	AB	BCDEF	A	CDEFG	AB	ABC	B	ABC	ABC	CDEF	ABC	ABCD	B	ABCD	AB	A
T-66-58-60	1865	1368	4.6	3.996	118.5	74.4	12.6	16.02	7.366	8.834	4.396	4	28.94	21.74	2.89	2.147
	AB	BCDEF	A	ABCDEF	BCD	ABCD	B	ABC	C	CDEF	ABC	ABCD	B	DEFGH	BCD	ABCDE
T-66-58-12	2331	1636	5	5.559	122.3	67.8	16.6	16.93	9.803	9.953	4.74	3.9	34.48	21.63	3.45	2.314
	AB	BC	A	A	BC	CDEFGH	B	A	AB	B	ABC	ABCD	B	EFGH	A	ABC
Azadi	2704	1245	3.2	3.062	106.8	67.51	16.6	14.9	9.938	9.555	4.244	3.6	29.06	27.02	2.91	1.931
	A	BCDEF	A	CDEFG	DEF	CDEFGHI	B	ABCD	AB	BC	BC	CD	B	ABC	CDE	DE
T-65-9-11	2243	1347	6.1	4.408	130.9	69.51	24.5	14.87	7.933	8.813	4.732	4.6	27.04	19.58	2.7	2.063
	AB	BCDEF	A	ABCDE	AB	BCDEFG	A	ABCD	BC	CDEF	ABC	A	B	GH	CDE	ABCDE
O-64-4	2272	1188	4.3	3.795	91.31	62.66	16.4	14.21	10	8.74	4.176	3.9	29.82	20.33	2.98	1.919
	AB	DEFG	A	BCDEFG	GH	FGHI	B	ABCDE	AB	CDEFG	BC	ABCD	B	FGH	CDE	DE
Tajan	2330	1086	5.1	3.97	90.39	59.85	15.5	14.52	9.06	9.44	4.536	3.5	28.8	22.93	2.88	2.11
	AB	EFG	A	ABCDEF	GH	HI	B	ABCD	ABC	BCD	ABC	D	B	BCDEFGH	CDE	ABCDE

Cont'd ...

Table II. Continued from previous page

	GNS Normal saline		GWS Normal saline		GNP Normal saline		GWP Normal saline		GLNormal saline		100GWNormal saline		BNormal saline		1 m YNormal saline		HINormal saline		HW Normal saline	
Bezostaia	30.93	31.63	1.508	1.152	99.8	94.84	4.84	2.92	6.459	6.033	48.54	31.04	1.136	0.4058	0.3692	0.1264	32.2	32.08	74.95	66.95
	ABCDE	ABCDE	ABC	A	A	ABCD	A	ABC	FG	E	EFGHI	BCDEF	AB	ABCDE	ABC	AB	ABCDEFG	ABCD	ABC	DEFGHI
T-66-58-7	29.73	29.53	1.653	1.085	150.6	87.59	8.446	2.959	7.803	7.058	55.98	34.6	1.272	0.4762	0.3628	0.152	27.72	31.81	71.95	64.2
	BCDE	CDE	ABC	A	A	BCDE	A	ABC	A	ABCD	ABCD	ABCDE	AB	ABCD	ABC	AB	EFG	ABCD	ABCDE	GHIJ
T-67-60	28.65	35.18	1.67	1.426	156.6	90.41	8.783	3.518	7.24	6.458	54.73	37	1.167	0.3309	0.3534	0.09841	30.06	30.5	70.5	65.3
	CDE	ABCDE	ABC	A	A	BCDE	A	ABC	ABCDE	BCDE	BCDE	AB	AB	DE	ABC	B	CDEFG	ABCD	CDE	FGHI
T-65-9-1	26.98	35.47	1.19	1.084	120.2	113.6	5.244	3.207	6.712	6.499	43.59	28.73	1.316	0.4557	0.3925	0.1522	29.25	34.24	72.4	68.25
	CDE	ABCDE	C	A	A	ABC	A	ABC	DEFG	BCDE	IJK	CDEFG	A	ABCD	ABC	AB	DEFG	ABC	ABCDE	BCDEFG
Omid	34.7	40.27	1.793	1.221	94.8	132.5	4.543	3.95	7.013	6.534	47.27	26.41	1.244	0.4145	0.3684	0.0888	29.2	22.08	70.9	59.45
	ABCDE	ABCD	ABC	A	A	ABC	A	ABC	BCDEF	BCDE	GHIJ	FG	AB	ABCDE	ABC	B	DEFG	D	CDE	J
Inia	32.96	35.07	1.745	1.337	151.1	88.51	7.915	2.91	7.257	7.023	52.2	32.47	1.336	0.3904	0.4343	0.159	31.22	41.27	72.55	70.5
	ABCDE	ABCDE	ABC	A	A	BCDE	A	ABC	ABCDE	ABCD	CDEFG	BCDEF	A	BCDE	AB	AB	ABCDEFG	A	ABCDE	ABCDE
7T-66-58-8	33.46	33.27	1.967	1.258	125.7	108.1	7.43	4.102	7.733	6.994	58.32	36.02	1.188	0.4883	0.3475	0.1539	29.65	31.27	69.8	64.35
	ABCDE	ABCDE	ABC	A	A	ABC	A	AB	AB	ABCD	ABC	ABC	AB	ABCD	ABC	AB	CDEFG	ABCD	E	GHIJ
T-65-5-1	30.98	37.02	1.778	1.475	151.4	87.38	8.411	3.41	7.301	7.092	50.89	37.79	0.9172	0.3731	0.229	0.1094	25.23	29.09	72.3	64.15
	ABCDE	ABCDE	ABC	A	A	BCDE	A	ABC	ABCDE	ABCD	DEFGH	AB	AB	BCDE	C	B	G	BCD	ABCDE	GHIJ
Tajan	30.4	36.01	1.449	1.374	126.7	84.04	5.742	2.991	6.203	6.21	44.51	37.05	0.931	0.3279	0.3302	0.09381	35.29	28.1	75.85	73.25
Garm	ABCDE	ABCDE	ABC	A	A	CDE	A	ABC	G	DE	IJK	AB	AB	DE	ABC	B	ABCD	BCD	A	AB
T-65-9-1p	34.93	41.41	1.485	1.193	163	144.3	6.759	4.164	6.622	6.621	42.27	27.72	1.325	0.3291	0.4393	0.1086	32.88	31.89	70.85	62.7
	ABCDE	ABCD	ABC	A	A	AB	A	AB	EFG	ABCDE	JK	DEFG	A	DE	AB	B	ABCDEF	ABCD	CDE	HIJ
Tabassi	34.7	35.98	1.965	1.391	129.4	120.4	6.974	4.448	7.391	6.786	53.99	36.48	1.15	0.4651	0.3406	0.1446	29.7	31.32	72.75	67.95
	ABCDE	ABCDE	ABC	A	A	ABC	A	AB	ABCD	ABCDE	BCDEF	ABC	AB	ABCD	ABC	AB	CDEFG	ABCD	ABCDE	CDEFG
T-65-7-1	25.1	22.88	1.459	0.9751	92.7	32.93	5.449	1.489	7.477	7.183	57.61	42.15	1.366	0.5255	0.4006	0.1481	29.41	27.68	72.4	67.8
	DE	E	ABC	A	A	E	A	C	ABC	ABC	ABC	A	A	AB	ABC	AB	DEFG	BCD	ABCDE	CDEFGH
T-65-4	34.02	30.63	1.717	1.034	174.1	73.25	8.692	2.455	7.454	7.036	49.55	33.35	0.9856	0.3452	0.3166	0.1217	32.32	35.08	71.25	64.6
	ABCDE	BCDE	ABC	A	A	CDE	A	BC	ABC	ABCD	EFGHI	BCDEF	AB	CDE	ABC	AB	ABCDEFG	ABC	BCDE	GHI
T-65-58-10	31.35	33.92	1.848	1.322	152.5	77.01	8.945	2.83	7.629	7.274	57.95	37.06	1.295	0.51	0.4298	0.1595	33.34	31.5	70.5	67.65
	ABCDE	ABCDE	ABC	A	A	CDE	A	ABC	AB	AB	ABC	AB	A	ABC	AB	AB	ABCDEF	ABCD	CDE	CDEFGHI
O-64-1-1	48.37	43.22	1.983	1.374	220.1	151.9	8.924	4.309	6.287	6.37	39.48	28.62	1.263	0.3863	0.4679	0.1209	37.12	29.64	73.3	72.65
	AB	ABC	ABC	A	A	A	A	AB	G	BCDE	K	CDEFG	AB	BCDE	A	AB	ABC	BCD	ABCDE	ABC
T-66-58-9	35.09	39.95	2.144	1.555	174.6	104.3	10.68	3.627	7.787	6.8	61.78	34.94	1.256	0.53	0.3735	0.1533	29.89	29.6	72.5	66.35
	ABCDE	ABCD	AB	A	A	ABC	A	ABC	A	ABCDE	A	ABCD	AB	AB	ABC	AB	CDEFG	BCD	ABCDE	EFGHI
Pishtaz	43.89	27.55	2.182	0.9918	155.7	40.19	7.498	1.463	6.89	6.268	47.98	36.61	0.8679	0.3979	0.2815	0.1083	32.66	26.88	76.3	71.85
	ABCD	DE	A	A	A	DE	A	C	CDEFG	DE	FGHIJ	ABC	AB	BCDE	BC	B	ABCDEFG	BCD	A	ABCD
T-65-6	35.01	34.3	1.854	1.342	194.8	74.13	10.44	2.814	7.09	6.605	53.54	37.67	0.8973	0.4076	0.2282	0.1235	27.09	30.62	74.9	67.2
	ABCDE	ABCDE	ABC	A	A	CDE	A	ABC	ABCDEF	ABCDE	BCDEF	AB	AB	ABCDE	C	AB	FG	ABCD	ABC	DEFGHI
T-66-58-6	31.64	36.79	1.834	1.464	124.6	86.97	7.36	3.355	7.744	7.087	59.17	38.37	0.7762	0.5724	0.2432	0.188	31.47	33	70.1	68.35
	ABCDE	ABCDE	ABC	A	A	BCDE	A	ABC	AB	ABCD	AB	AB	B	A	C	A	ABCDEFG	ABCD	DE	BCDEFG
T-66-58-60	22.26	44.89	1.238	1.617	79.8	120.2	4.474	4.571	7.626	7.455	54.43	37.98	1.17	0.3337	0.3694	0.1277	31.55	37.67	73.6	68.35
	E	AB	BC	A	A	ABC	A	AB	AB	A	BCDE	AB	AB	DE	ABC	AB	ABCDEFG	AB	ABCDE	BCDEFG
T-66-58-12	34.29	43.84	2.067	1.672	141.5	150.7	8.523	5.285	7.136	7.045	61.27	35.33	1.241	0.4846	0.3807	0.1243	31.36	26.58	72.4	63.5
	ABCDE	ABC	ABC	A	A	A	A	A	ABCDEF	ABCD	A	ABCD	AB	ABCD	ABC	AB	ABCDEFG	BCD	ABCDE	GHIJ
Azadi	49.29	45.74	2.148	1.268	146.9	95.02	6.616	2.51	7.177	6.622	44.28	26.73	1.017	0.46	0.3835	0.1436	38.23	30.76	74.6	70.35
	A	A	AB	A	A	ABCD	A	BC	ABCDEF	ABCDE	IJK	EFG	AB	ABCD	ABC	AB	A	ABCD	ABCD	ABCDEF
T-65-9-11	27.11	30.49	1.472	1.06	129.7	108.6	6.68	3.808	7.091	7.118	51.24	34.73	1.092	0.4272	0.3229	0.1001	30.22	25.25	70.85	62.6
	CDE	BCDE	ABC	A	A	ABC	A	ABC	ABCDEF	ABCD	DEFGH	ABCD	AB	ABCDE	ABC	B	BCDEFG	CD	CDE	IJ
O-64-4	45.84	35.48	2.04	0.8924	162.9	98.3	7.126	2.311	6.182	6.33	44.45	23.06	0.9857	0.3645	0.3352	0.1212	34.71	32.96	75.8	72.1
	ABC	ABCDE	ABC	A	A	ABCD	A	BC	G	CDE	IJK	G	AB	BCDE	ABC	AB	ABCDE	ABCD	A	ABCD
Tajan	37.46	33.78	1.736	1.303	169.9	87.18	7.883	3.178	6.508	6.586	45.92	38.29	0.9596	0.2633	0.3563	0.09929	37.61	36.38	75.45	73.95
	ABCDE	ABCDE	ABC	A	A	BCDE	A	ABC	FG	ABCDE	HIJ	AB	AB	E	ABC	B	AB	ABC	AB	A

FLA: Flag Leaf Area, NFT: Number of Fertile Tiller, PH: Plant Height, FSS: Fertile Spikelet per Spike, SL: Spike Length, NN: Number of Node, FLNSD: Flag Leaf Node Until Spike Distance, SD: Stem Diameter, GNS: Grain Number per Main Spike, GWS: Grain Weight per Main Spike, GNP: Grain Number per Plant, GWP: Grain Weight per Plant, GL: Grain Length, 1000GW: 1000 Grain Weight:, B: Biomass, 1 MY: Yield of I m Row, HI: Harvest Index, HW: Hectoliter Weight
Means sharing common letters do not differ using Duncan multiple rang test at 5% p
had the maximum of grain per spike.
1000 grain weight. A significant difference ($\mathrm{P}<0.01$) in 1000 grain weight of all cultivar and mutants was noted under two conditions (Table I). Under normal condition maximum 1000 grain weight was observed in T-66-58-9, T-66-58-12, T-66-58-12, T-66-58-8, T-65-7-1 and T-65-58-10 and in saline condition, T-65-7-1, T-66-58-6, Tajan and T-66-58-12 produced maximum 1000 grain weight.
Biomass. All the cultivars and mutants indicated no significant differences for biomass in two conditions (Table I). Under normal condition maximum average of biomass was produced by T-65-7-1, Inia and T-65-58-10. However, under saline condition T-66-58-6, T-66-58-9, T-66-58-9 and T-66-58-10 were produced the highest biomass.
Harvest index. A significant Difference ($\mathrm{P}<0.05$) in harvest index among of cultivars and mutants was noted under normal conditions but under saline condition there was not (Table I). Under normal condition maximum
harvest index was obtained by Azadi, Tajan, O-64-1-1, O-64-4 and Tajan Garm but under salinity was obtained by Inia, T-65-4, T-66-58-60 and Tajan Garm indicated greater harvest index.
Yield of $\mathbf{1} \mathbf{~ m}$ row. No significant differences were found among different cultivars and mutants in normal and saline conditions (Table I). However, the maximum average of grain yield of 1 m row produced by $0-64-1-1$, T-65-9-1P, Inia and T-65-58-10 normally, whereas under salinity T-66-58-9, T-66-58-6, T-66-58-10, Inia and T-65-9-I yielded better.

DISCUSSION

Saline condition reduced many of studied traits. Data showed that some parameters like flag leaf area and length, number of fertile tiller, plant height, flag leaf node until spike distance, number of spikelets per spike, grain per spike weight, number of grain per plant and grain per plant

Table III. Phenotypic correlation coefficient of morphological and yield traits in wheat cultivars and mutants under normal and salinity conditions

	Condition	FLA	NFT	PH	FSS	SL	NN	FLNSD	SD	GNS	GWS	GNP	GWP	GL	1000GW	B	1MY	HI	HW
FLA	Normal	1																	
	salinity	1																	
NFT	Normal	-0.31	1																
	salinity	0.3	1																
PH	Normal	0.03	0.2	1															
	salinity	$0.44{ }^{*}$	0.07	1															
FSS	Normal	0.12	0.23	0.17	1														
	salinity	0.52 **	0.51 **	$0.49{ }^{*}$	1														
SL	Normal	0.31	-0.23	-0.12	0.19	1													
	salinity	0.13	0.67 **	0.1	0.27	1													
NN	Normal	-0.13	$0.44{ }^{*}$	0.37	0.0	-0.12	1												
	salinity	0.26	-0.12	$0.52{ }^{* *}$	0.16	-0.43 *	1												
FLNSD	Normal	0.1	0.1	$0.83{ }^{* *}$	0.07	-0.01	0.04	1											
	salinity	0.27	-0.19	$0.64{ }^{*}$	0.29	0.02	0.09	1											
SD	Normal	0.14	0.1	0.18	-0.02	0.02	0.15	0.31	1										
	salinity	0.34	0	0.3	0.43 *	0.08	-0.05	0.31	1										
GNS	Normal	0.18	-0.21	$-0.41{ }^{*}$	0.25	$0.78{ }^{* *}$	-0.31	-0.14	-0.02	1									
	salinity	0.1	0.52 **	0.05	$0.51{ }^{* *}$	$0.65{ }^{* *}$	-0.44*	0.04	0.12	1									
GWS	Normal	0.11	0	004	0.22	$0.72{ }^{* *}$	-0.12	0.33	0.3	076 **	1								
	salinity	0.27	0.28	0.32	$0.54{ }^{* *}$	0.37	-0.15	0.31	0.59 **	$0.66{ }^{* *}$	1								
GNP	Normal	0.11	$0.59{ }^{* *}$	-0.33	0.29	0.39	0.06	-0.19	0.06	$0.61{ }^{* *}$	0.51 **	1							
	salinity	0.26	$0.88{ }^{* *}$	0.03	0.64 **	$0.65{ }^{* *}$	-0.17	-0.16	0.04	$0.76{ }^{* *}$	$0.42{ }^{*}$	1							
GWP	Normal	-0.09	$0.74 *$	0.06	0.2	0.21	0.22	0.19	0.33	0.29	$0.58{ }^{* *}$	0.83 **	1						
	salinity	-0.42*	0.8 **	0.28	0.75 **	$0.54{ }^{* *}$	0.11	0.02	0.32	$0.67{ }^{* *}$	$0.68{ }^{* *}$	0.89 **	1						
GL	Normal	0.06	0.33	0.63 **	-0.14	-0.25	0.31	$0.58{ }^{* *}$	0.32	-0.41 *	0.11	-0.21	0.27	1					
	salinity	0.34	0.03	$0.52{ }^{* *}$	0.29	-0.06	0.33	0.13	0.19	0.02	0.28	-0.05	0.21	1					
1000GW	Normal	0.16	0.31	0.62 **	-0.13	-0.27	0.27	$0.64{ }^{* *}$	0.48 *	-0.47*	0.17	-0.23	0.34	$0.82{ }^{* *}$	1				
	salinity	0.06	-0.4 *	0.35	-0.03	-0.37	0.31	0.21	0.46 *	0.41 *	0.34	$-0.5{ }^{* *}$	-0.06	$0.47{ }^{*}$	1				
B	Normal	-0.11	0.02	0.02	-0.12	-0.06	0.26	-0.02	0.11	-0.27	-0.26	-0.17	-0.13	0.15	0.13	1			
	salinity	0.43 *	-0.01	0.43 *	0.18	-0.07	0.36	0.24	0.16	-0.11	0.07	-0.09	-0.11	0.38	0.17	1			
1MY	Normal	0.04	-0.15	-0.37	-0.08	0.15	0.02	-0.33	0.14	0.09	-0.14	0.01	-0.17	-0.16	-0.2	$0.84{ }^{* *}$	1		
	salinity	0.23	-0.14	0.21	0.14	-0.26	0.12	0.23	0.16	0.06	. 01	-0.14	-0.09	$0.44{ }^{*}$	0.15	$0.76{ }^{* *}$			
HI	Normal	0.35	-0.35	$-0.67{ }^{* *}$	0.09	0.38	-0.32	-053 **	0.06	$0.6{ }^{* *}$	0.2	0.25	-0.11	-0.53	-0.53 **	-0.14	0.41 *	1	
	salinity	-0.19	-0.13	-0.29	0	-0.29	-0.27	-0.07	0.02	0.05	0.08	-0.07	-0.07	0.2	0.01	-0.26	0.41 *	1	
HW	Normal	0.07	-0.39	-. $52{ }^{* *}$	-0.13	0.07	-0.59 **	-0.3	-0.21	0.43 *	0.14	0.15	-0.1	-0.61	-0.47 *	-0.41*	-0.15	0.43	1
	salinity	$-0.62^{* *}$	-0.35	-0.54 ${ }^{* *}$	-0.52 **	-0.12	$-0.58{ }^{* *}$	-0.1	-0.16	-0.02	-0.05	-0.3	-0.39	$-0.36{ }^{*}$	0.04	-0.24	-0.09	0.04	1

FLA: Flag Leaf Area, NFT: Number of Fertile Tiller, PH: Plant Height, FSS: Fertile Spikelet per Spike, SL: Spike Length, NN: Number of Node, FLNSD: Flag Leaf Node Until Spike Distance, SD: Stem Diameter, GNS: Grain Number per Main Spike, GWS: Grain Weight per Main Spike, GNP: Grain Number per Plant, GWP: Grain Weight per Plant, GL: Grain Length, 1000GW: 1000 Grain Weight: B: Biomass, 1 MY: Yield of I m Row, HI: Harvest Index, HW: Hectoliter Weight. **,*and ns: significant at $0.01,0.05$ and non significant
weight, 1000 grain weight, biomass, yield of 1 m row and hectoliter weight were reduced by salinity and wide phenotypic differences observed for these components (Table I \& II). This indicated that evaluation for salt tolerance among cultivars and mutants can be based on genetic diversity in these components (Kirst, 1989). Akram et al. (2002) also concluded that salinity reduced spike length, number of spikelet per spike, number of grain per spikelet, 100 grain weight and grain yield per plant. This indicated that evaluation for salt tolerance among cultivars and mutants can be based on genetic diversity in these components. El-Hendawy et al. (2004) reported that tiller number was affected more by salinity than leaf number and leaf area per plant. Salinity decreased dry weight per plant and spikelet number on the main stem decreased much more with salinity than spike length, grain number and 1000-grain weight. Kamkar et al. (2004) reported that the salinityinduced source limitation reduces yield primarily by a severe reduction in grain number and then by reduction in grain weight. Shannon (1997) reported that many physiologically processes are affected by salinity but notably these are reduced cell growth, decreased leaf area, biomass and yield. Kamkar et al. (2004) reported that the rate of photosynthesis was significantly reduced by
increased level of salinity, which is consistent with results of Francois et al. (1994) and Kamkar et al. (2004).

At the vegetative growth stage, the three agronomic parameters (i.e., tiller number, leaf number \& leaf area per plant) were used to evaluate genotypes for salt tolerance. Salt sensitive genotypes showed a greater reduction in tiller number than tolerant ones. This indicated that tiller number and their behavior under salinity can be used as simple and non-destructive character to evaluate wheat genotypes in breeding programs. Nicolas et al. (1994) found that salt stress during tiller emergence can inhibit their formation and can cause their abortion at later stages.

Despite decrease in the number of spikelet per spike and spike length in saline condition, the number of grain per spike increased, which indicated that salt stress reduced the number of tillers and the number of spikelet per spike. Loss in grain yield was partially offset by the increased number and weight, which occurred in response to source limitation. Such effect may be due to many factors such as total photosynthates production, leaf number and area and duration of photosynthesis. This was the most important for final grain yield reduction in salt stressed plants. Maas et al. (1996) reported that salt stress reduced number of tillers and spikelet per spike and the loss in grain yield was partially

Table IV. Path analysis based on phenotypic correlation coefficient for morphological and yield traits under normal and salinity conditions

1-Morphological traits											
FLA	Condition	FLA	NFT	PH	$\begin{aligned} & \hline \text { FSS } \\ & -0.0058 \end{aligned}$		SL 0.0038	$\begin{aligned} & \hline \text { NN } \\ & -0.0278 \end{aligned}$	$\begin{aligned} & \hline \text { FLNSD } \\ & -0.0057 \end{aligned}$	$\begin{aligned} & \hline \text { SD } \\ & 0.0292 \end{aligned}$	Corr
	Normal	(0.0178)	0.0422	-0.0103							0.044
	Salinity	(.2278)	0.0154	0.1259	0.0436		-0.0689	-0.086	0.0129	-0.0379	0.232
NFT	Normal	-0.0054	(-0.1383)	-0.0768	-0.0102		-0.0237	0.0918	-0.006	0.0216	-0.147
	Salinity	0.0674	(0.0522)	0.0206	0.0422		-0.0354	0.0385	-0.009	0	-0.141
PH	Normal	0.0005	-0.027	(-/3858)) -0.0075		-0.0123	0.079	-0.0489	0.0376	-. 365
	Salinity	0.1	0.0037	(0.2869)) 0.0411		-0.0526	-0.0171	0.0312	-0.0335	0.206
FSS	Normal	0.0021	-0.0314	-0.0595	(-0.045)		0.0202	0.043	-0.0043	-0.0049	-0.084
	Salinity	0.1191	0.0264	0.1414	(0.0834)		-0.139	-0.0527	0.0135	-0.0482	0.144
SL	Normal	0.001	0.0315	0.0455	-0.009		(0.1042)	-0.0244	0	0.004	0.154
	Salinity	0.0298	0.0351	0.0287	0.022		(-0.5264)	0.1417	0.001	-0.009	-0.259
NN	Normal	-0.0023	-0.06	-0.1443	-0.0092		-0.012	(0.211)	-0.0021	0.03	0.01
	Salinity	0.0595	-0.006	0.1486	0.0133		0.2263	(-0.3296)	0.0043	0.0056	0.122
FLNSD	Normal	0.0017	-0.0141	-0.321	-0.0033		0	0.0076	(-0.0588)	0.063	-0.325
	Salinity	0.06	-0.0097	0.1848	0.0232		-0.011	-0.0293	(0.0485)	-0.0347	0.232
SD	Normal	0.0025	-0.0145	-0.071	0.0011		0.0023	0.031	-0.018	(0.2055)	0.139
	Salinity	0.0765	-0.0002	0.0852	0.0357		-0.0432	0.0015	0.015	(-0.1127)	0.159
2-Yield Component											
GNS		GNS	GWS	GNP	GWP	GL	1000GW	B	HI	HW	Corr
	Normal	(-0.128)	0.066	0.044	0.021	0.018	-0.017	-0.244	0.326	-0.004	0.084
	Salinity	(0.15)	-0.077	0.098	-0.092	-0.01	0.065	-0.11	0.034	0	-0.06
GWS	Normal	-0.097	(0.087)	0.036	-0.025	0.004	-0.019	-0.235	0.109	-0.001	-0.142
	Salinity	0.099	(-0.117)	0.054	-0.093	-0.014	0.053	0.065	0.054	0	0.101
GNP	Normal	-0.078	0.044	(0.072)	-0.036	-0.008	0.026	-0.152	0.138	-0.002	0.004
	Salinity	0.114	-0.049	(0.128)	-0.122	0.002	-0.078	-0.089	-0.048	-0.003	-0.144
GWP	Normal	-0.037	0.05	0.059	(-0.044)	0.01	-0.037	-0.115	-0.097	0.057	-0.171
	Salinity	0.099	-0.079	0.114	(-0.138)	-0.01	-0.01	-0.015	-0.046	-0.004	-0.089
GL	Normal	0.053	0.01	-0.016	-0.012 (0.03	(0.036)	-0.092	0.14	-0.286	0.005	-0.161
	Salinity	0.003	-0.033	-0.006	-0.029	(-0.048)) 0.074	0.364	0.131	-0.004	0.444
1000GW	Normal	0.061	0.015	-0.017	-0.015	0.03	(-0.111)	0.116	-0.286	0.004	-0.203
	Salinity	0.062	-0.037	-0.064	0.009	-0.037	(0.156)	0.165	0.007	0	0.148
B	Normal	0.034	-0.022	-0.012	0.006	0.007	-0.014	(0.934)	-0.077	0.004	0.837
	Salinity	-0.017	-0.008	-0.012	0.0021	-0.018	0.027	(0.965)	-0.172	-0.003	0.763
HI	Normal	-0.077	0.017	0.018	0.005	-0.019	-0.006	-0.129	(0.544)	-0.004	0.414
	Salinity	0.008	-0.009	-0.009	0.009	-0.016	0.002	-0.25	(0.666)	0.001	0.411
HW	Normal	-0.055	0.012	0.011	0.005	-0.022	0.049	-0.373	0.234	(-0.001)	-0.148
	Salinity	-0.003	0.006	-0.039		0.018	0.006	-0.232	0.028	(0.011)	0.093

FLA: Flag Leaf Area, NFT: Number of Fertile Tiller, PH: Plant Height, FSS: Fertile Spikelet per Spike, SL: Spike Length, NN: Number of Node, FLNSD: Flag Leaf Node Until Spike Distance, SD: Stem Diameter, GNS: Grain Number per Main Spike, GWS: Grain Weight per Main Spike, GNP: Grain Number per Plant, GWP: Grain Weight per Plant, GL: Grain Length, 1000GW: 1000 Grain Weight: B: Biomass, HI: Harvest Index, HW: Hectoliter Weight. Data on parenthesis are related to indirect effect. For morphological traits Residual effect on normal condition $=0.476$, Residual effect on rain fed condition $=0.632$. For yield components Residual effect on normal condition $=0.99$, Residual effect on rain fed condition $=0.94$ Corr: Correlation Coefficient
offset by the increasing number and weight of kernels on remaining culms. Tanveer-ul-Haq et al. (2003) reported that under salinity average shoot length and fresh shoot weight decreased, whereas the number of tillers per plant increased. Francois et al. (1994) found smaller and less consistent increase in HI with salt stress for wheat cultivars. Kelman and Qualset (1991) reported that salinity increased the HI.

Various yield components showed different responses to salinity. A 1000 grain weight was least sensitive to salinity, whereas spikelet number was the most sensitive yield component, which is in agreement with observation on rice (Zeng \& Shannon, 2000). Grain number is determined during the period of spike emergence to anthesis and grain weight is determined between anthesis and maturity; the least sensitive stage in wheat (Kirby, 1988; Mass and Grieve, 1990; Frank et al., 1997). Because spikelets initiate at the vegetative stage, the negative effect of salinity on spikelet number indicated that this parameter together with
number of tillers per plant was more sensitive at vegetative stage. This suggested that evaluation for salt tolerance among genotypes can be based on the genetic diversity in tiller and spikelet numbers. When the developmental pattern of genotypes is so different between growth stages, assessment of the actual salt tolerance of the genotypes may be determined by comparisons of their biomass production over a long growth period, which serves as another criterion to evaluate the salt tolerance (Leland et al., 1994; Munns et al., 2000). This indicated that the reduction in dry weight was closely related to tiller and leaf number and its area (Hu et al., 1997). The reduction in total biomass in the sensitive genotypes was probably due to extra energy utilized for osmolytes accumulation, for osmotic adjustment (Wyn Jones \& Gorham, 1993). Salt tolerance at different growth stages was observed in Tabbasi, T65-7-1, T-65-5-1, T-66-$58-6$ \& T-66-58-60. The characteristics of these genotypes are more tillers, higher leaf number and greater leaf area

Table V. Stepwise and multiple regression of morphologic and component traits (independent variables) on the yield (dependent variables) under normal and Salinity condition

1-morphological Traits										
	Stepwise Regression						Multiple Regression			
	Normal				Salinity		Normal		Salinity	
	step	R	Cr	step	R	Cr	Cr	Prob $>$ F	Cr	Prob>F
FLA							0	0.94	0	0.43
NFT							-0.0085	0.62	0.0015	0.9
PH	1	0.133	-0.0013	-			-0.0014	0.49	0.0012	0.55
FSS							-0.0012	0.86	0.0017	0.81
SL	-	-	-	-		-	0.0084	0.67	-0.016	0.22
NN	-	-	-	-	-	-	0.085	0.52	-0.03	0.43
FLNSD	-	-	-			-	-0.0002	0.91	. 0005	0.89
SD	-	-	-				0.024	0.41	.-0.019	0.7
						eld compo				
GNS	-	-	-	-	-	-	-0.001	0.49	0.0007	0.24
GWS	-	-	-	-	-	-	0.019	0.57	-0.014	0.37
GNP	-	-	-	-	-	-	0.0001	0.77	0.0001	0.64
GWP		-	-			-	-0.0016	0.86	-0.0038	0.6
GL				-	-	-	0.004	0.48	-0.0033	0.43
1000GW	3	0.9914	-0.0004		-	-	-0.0011	0.31	-0.0008	0.31
B	1	0.7	0.3307	1	0.583	0.3099	0.3297	0.0001	0.3177	0.0001
HI	2	0.9898	0.0099	2	0.9797	0.0039	0.0104	0.0001	0.0041	0.0001
HW	-	-	-	3	0.9828	0.00041	-0.0003	0.81	0	0.84

FLA : Flag Leaf Area, NFT : Number of Fertile Tiller, PH: Plant Height, FSS: Fertile Spikelet per Spike, SL : Spike Length, NN : Number of Node, FLNSD: Flag Leaf Node Until Spike Distance, SD: Stem Diameter, GNS: Grain Number per Main Spike, GWS : Grain Weight per Main Spike, GNP :Grain Number per Plant, GWP: Grain Weight per Plant, GL : Grain Length, 1000GW: 1000 Grain Weight :, B: Biomass, HI : Harvest Index, HW : Hectoliter Weight. $\mathrm{R}_{\text {_ }}$ cumulative values of R^{2} (Coefficient of Determination) particular steps (independent variables involved), Cr _ coefficient of regression, in stepwise regression only those coefficient of regression are given where $\mathrm{P}>0.05$
compared with other genotypes, less effect of salinity on final grain yield and the yield components of the main spike.

Salinity tolerance for cultivar and mutants was derived. Salinity sensitivity was 0.3643 . In other words average yield of cultivars and mutants was reduced by 3.57%. It was evident from the data that T-66-58-6 was more flexible under salinity (Table I). Correlation of salinity intensity (SSI) with differences between salinity and nonstress for morphological and yield components revealed that SSI had positive correlation with biomass, yield of 1 m row and harvest index and negative one with grain length. This indicated that when biomass, yield of 1 m row and harvest index under salinity decrease as compared to non-stress condition, also salinity intensity increased.

Flag leaf area had positive correlation with plant height, number of fertile spikelet per spike and biomass (Table III) but a negative one with biomass and hectoliter weight under salinity. There was no correlation between biomass with flag leaf area and height under control but under salinity positive correlation were observed. Under normal condition HI had positive correlation with number of grain per spike and negative one with plant height, flag leaf node until spike distance and grain length but not under salinity stress. Yield of 1 m row under normal condition had no correlation with grain length but a positive one under in salinity. Under normal condition 1000 grain weight had positive correlation with plant height, flag leaf node until spike distance and stem diameter but in salinity stress condition no correlations existed.
Path analysis. Although correlation coefficient was important to determine, traits that directly affect grain yield
could not determine indirect effects of these traits on grain yield. These situations are more common in cereals, because of yield traits that occurred at a different growing stage and affect each other and are explicitly studied using path coefficient analysis. The yield components have either a direct or an indirect effect on grain yield (Dofing \& Knight, 1992). Therefore, it was essential to determine the effects of yield components. In this study path coefficient analysis for morphological traits under normal condition revealed that stem diameter and number of node had positive direct effect and plant height had negative effect on yield of 1 m row (Table IV). Under salinity stress spike length and number of node had negative effect and flag leaf area and plant height had positive effect on yield of 1 m row. However, under salinity stress due to indirect effect via other morphological traits, the total correlations were very low. Under normal condition flag leaf area had a positive indirect effect. Under normal condition number of node and flag leaf node until spike distance had negative indirect effect through plant height on yield of 1 m row, while under salinity stress number of node, number of spikelete per spike and flag leaf node until spike distance had positive indirect effect through plant height on yield of 1 m row. Traits path analysis for yield components revealed that under both conditions biomass and harvest index had positive direct effect on yield of 1 m row. Under normal condition number of grain per spike weight and hectoliter weight had negative indirect effect through biomass and number of grain per plant and hectoliter weight had positive direct effect and grain length and 1000 grain weight had negative indirect effect through harvest index on yield of 1 m row. In salt stressed plants,
harvest index and hectoliter weight had negative and grain length had positive effect on biomass on yield of 1 m row.
Regression analysis. Result of stepwise regression analysis (Table V) indicated that in normal condition for morphological traits, yield of 1 m row was predominantly determined by the plant height (coefficient of determination $\mathrm{R}^{2}=0.13$) and for yield traits yield of 1 m row was predominantly determined by the biomass, harvest index and 1000 grain weight (coefficient of determination $\mathrm{R}^{2}=0.7$ \& 0.99), whereas in salinity stress condition yield of 1 m row was determined by biomass, harvest index and hectoliter weight (coefficient of determination $R^{2}=0.58,0.98 \& 0.98$, respectively). Result of multiple regression indicated that in normal condition for morphological traits indicated that yield of 1 m row was not determined by any traits but yield traits was determined by biomass and harvest index. Under salinity stress condition for morphological traits indicated that yield of 1 m row was not determined by any traits but in yield components yield of 1 m row was determined with biomass, harvest index and hectoliter weight.

CONCLUSIONS

Values of investigated characters for cultivars and mutants in salinity condition were found lower than normal condition. T-66-58-6 showed greater yield stability across normal and salinity conditions. The correlation observed among yield of 1 m row and other traits indicated that in normal and salinity condition biomass and harvest index had positive and significant correlation with yield of 1 m row. Path analysis under normal condition indicated that morphological traits such as number of node had positive direct effect and plant height had negative direct effect on yield of 1 m row and also in salinity condition spike length and number of node had negative direct effect and plant height had positive direct effect on yield of 1 m row. In both conditions yield components such as biomass and harvest index had positive direct effect on yield of 1 m row. Data suggested that some plants traits like yield and harvest index may be used as selection criteria in wheat.

REFERENCES

Abou-Khadrah, S.H., S.A. Abdel-Hafez, F.A. Sorour and A.Z. El-Bably, 1999. Influence of irrigation with saline water on wheat yield, yield components and nutrient uptake. Irrigation management and daline conditions. Proceedings of Regional Symposium, Vol. 21, pp: 87-97. JUST, Irbid, Jordan
Akhtar, M.Z., M.A. Khan, K. Ahmad and M. Alam, 2001. Evaluation of wheat (Triticum aestivum L.) varieties for their potential grain yield under the agro ecological conditions of D. I. Khan. Online J. Biol. Sci., 1: 568-70
Akram, M., M. Hussain, S. Akhtar and E. Rasul, 2002. Impact of NaCl salinity on yield components of some wheat accessions/varieties. Int. J. Agric. Biol., 1: 156-8

Dofing, S.M. and C.W. Knight, 1992. Alternative model for path analysis of small yield. Crop Sci., 32: 487-9
Duncan, D.B., 1955. Multiple range and multiple F-test. Biometrics, II: 1
El-Hendawy, S.E.S., W. Schnitzler, U. Schmidhalter, F.J. Zeller and H. Yuncai, 2004. Evaluation Salt Tolerance of Wheat Genotypes at Different Growth Stages by Using Multiple Agronomic Parameters.

Salinity tolerance in Egyptian spring wheat genotypes
Francoice, L.E., E.V. Maas, T.J. Donovan and V.L. Young, 1986. Effect of salinity on grain yield and quality, vegetative growth and germination of semi-dwarf and durum wheat. Agron. J., 78: 1053-8
Francois, L.E., T.J. Donovan, E.V. Maas and S.M. Lesch, 1994. Time of salt stress affects growth and yield components of irrigated wheat. Agron. J., 86: 100-7
Frank, A.B., A. Bauer and A.L. Black, 1997. Effects of air temperature and water stress on apex development in spring wheat. Crop Sci., 27: 113-6
Hu, Y., J.J. Oertli and U. Schmidhalter, 1997. Interactive effects of salinity and macronutrient level on wheat: I. Growth. J. Pl. Nutr. 20: 115567
Kamkar, B., M. Kafi and A. Nassiri Mahallati, 2004. Determination of the Most Sensitive Developmental Period of Wheat (Triticum aestivum) to Salt Stress to Optimize Saline Water Utilization. $4^{\text {th }}$ International Crop Science Congress
Kelman, W.M. and C.O. Qualset, 1991. Breeding for salinity stressed environments: Recombinant inbred wheat lines under saline irrigation. Crop Sci., 31: 1436-42
Kingsbury, R.W., E. Epstein and R.W. Pearcy, 1984. Physiological responses to salinity in selected lines of wheat. Pl. Physiol., 74: 41723
Kirby, E.M., 1988. Analysis of leaf, stem and ear growth in wheat from terminal spikelet stage to anthesis. Field Crop Res., 18: 127-40
Kirst, G.O., 1989. Salinity tolerance of eukaryotic marine algae. Ann. Rev. Pl. Physiol. Pl. Mol. Biol., 40: 21-53
Leland, E.F., M.G. Catherine, V.M. Eugene and M.L. Scott, 1994. Time of salt stress affects growth and yield components of normal wheat. Agron. J., 86: 100-7
Long necker, N., E.J.M. Kirby and A. Robson, 1993. Leaf emergence, tiller growth and apical development of nitrogen_deficient spring wheat, Crop Sci., 33: 154-60
Maas, E.V. and C.M. Grieve, 1990. Spike and leaf development in salt stressed wheat. Crop Sci., 30: 1309-13
Maas, E.V., S.M. Lesch, L.E. Francois and M. Grieve, 1996. Contribution of individual culms to yield of salt stressed wheat. Crop Sci., 36: 142-9
Munns, R. and H.M. Rawson, 1999. Effect of salinity on salt accumulation and reproductive development in the apical meristem of wheat and barley. Australian J. Pl. Physiol., 25: 459-64
Munns, R. and R.A. James, 2003. Screening methods for salinity tolerance: a case study with tetraploid wheat. Pl. Soil, 59: 1-18
Munns, R., R.A. Hare, R.A. James and G.J. Rebetzke, 2000. Genetic variation for improving the salt tolerance of durum wheat. Australain J. Agric. Res., 51: 69-74

Nicolas, M.E., R. Munns, A.B. Samarakoon and R.M. Gifford, 1994. Elevated CO_{2} improves the growth of wheat under salinity. Australian J. Pl. Physiol., 20: 349-60
Richards, A.R. and T.F. Townley-Smith, 1987. Variation in leaf area development and its effects and water use, yield and harvest index of droughted wheat. Australian J. Agric. Res., 38: 983-92
SAS Institute Inc. 1990. SAS Procedures Guide: Version, 6.3 edition. Cary: SAS institute
Shannon, M.C., 1997. Adaptation of plants to salinity. Adv. Agron., 60: 75120
Sing, K.N. and R.S. Rana, 1984. Stabilityof wheat varieties suitable for cultivation in normal as well as salt-affected soils. Indian. J. Agric. Sci., 54: 950-4
Tanveer-Ul-Hagh, K. Mahmood, A. Shahzad and J. Akhitar, 2003.Tolerance potential of wheat cv. LU-260 to High salinity and waterlogging interaction. Int. J. Agric. Biol., 5: 162-5
Wyn Jones, R.G. and T. Gorham, 1993. Salt tolerance. In: Johnson, C.B. (ed.), Physiological Processes, pp: 271-92. Limiting Plant Productivity, Butterworths, London
Zeng, L. and M.C. Shannon, 2000. Effects of salinity on grain yield and yield components of rice at different seedling densities. Agron. J., 92: 418-23
(Received 28 November 2006; Accepted 23 February 2007)

