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Abstract 
 

Plants are essential sources of bioactive substances that promote health. For economic reasons, farmers usually focus on 

obtaining higher yields rather than crop nutraceutical quality. The application of non-essential elements (NEEs) is a technique 

used to increase secondary metabolites (SMs) in plants. This technique includes variations of the essential elements ratios in a 

nutrient solution or the inclusion of elicitors, such as salicylic acid or methyl jasmonate. Elicitor use is controversial because 

plants grow differently in inert substrates, in vitro and soil. Soil contains essential elements (EEs) and NEEs that can enhance 

SM synthesis and increase nutraceutical plant quality. However, any technique that modifies plant metabolism can decrease 

yields. Thus, developing techniques to increase both agricultural product yield and quality is necessary. This review aims to 

demonstrate the necessity for a new recipe or “cocktail” of plant nutrients based on EEs and NEEs, and elicitors apply to 

achieve both a high yield and crops nutraceutical quality. © 2017 Friends Science Publishers 
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Introduction 
 

Since the "Green Revolution," agriculture has been 

influenced by land mechanization, genetically improved 

crops, and the excessive use of fertilizers and pesticides 

which are harmful to the environment (Floros et al., 2010). 

Such changes have increased agricultural yields (Dayan et 

al., 2009) because of the more rapid growth of crops 

(Stefanelly et al., 2010). Moreover, improved plant care and 

optimal climate handling have improved the conditions for 

plant growth (Bennett et al., 2012) and reduced the 

production of secondary metabolites (SMs). 

Plants are an essential source of nutrients and 

secondary metabolites (SMs) (Patra et al., 2013), frequently 

referred as bioactive compounds, such as alkaloids, phenolic 

compounds (PCs) and terpenes (Jahangir et al., 2009). 

Certain SMs reduce the risk of disease, including colon 

cancer (Russell and Duthie, 2011) and, reduce blood 

pressure, serum lipids, diabetes mellitus, obesity (Perez-

Vizcaino and Duarte, 2010) and cardiovascular diseases 

(Bernal et al., 2011).  

Organic products contain additional SMs when 

compared with conventional products. The main difference 

between organic agriculture (OA) and conventional 

agriculture (CA) is that former uses more plant-friendly 

pesticides with lower residual effect, with crop growth 

medium as soil. Soil contains essential (EEs) and non-

essential elements (NEEs) in inadequate ratios for plant 

nutrition, and under stress conditions, plants produce more 

SMs (de Costa et al., 2013). Moreover, SMs alter normal 

growth, resulting in decreased crop yields. However, 

organic products have better nutraceutical quality, but OA 

cannot always satisfy the demand for horticultural products 

because a) certain crop yields are approximately 30% of the 

obtained in CA (Ramos-Solano et al., 2010) and b) OA 

occupies less than 5% of the cultivable land (Connor, 2008). 

Currently, various techniques are being used to 

increase SMs in plants, including varying ratios of EEs or 

adding NEEs in the nutrient solution (NS), soil or directly to 

the plant and applying elicitors such as jasmonic acid (JA), 

salicylic acid (SA) or nitric oxide (NO) and their 

derivatives. However, there is a risk of causing an increase 

or decrease in the yield and SM production by the use of 

these techniques. The application of elicitors is a widely 

used technique. However, the SM production in plants 

growing in soil, in vitro or in inert substrates varies, with 

more SMs usually produced in soil. 

In a broad sense, “elicitor”, for a plant refers to 

chemicals from various sources that can trigger 

physiological and morphological responses (Zhao et al., 

2005). For instance: methyl jasmonate (MeJ) (Heredia and 

Cisneros-Zevallos, 2009), JA (Saw et al., 2010), SA, and 

hydrogen peroxide (H2O2) (Jeong and Park, 2005) act as 

elicitors. Elicitors mimic the action of plant signaling 
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molecules (Ruiz-García and Gómez-Plaza, 2013) and 

produce reactive oxygen species (ROS) (Yoshioka et al., 

2011) that stimulate the plant to produce defense hormones 

and enzymatic or non-enzymatic antioxidant mechanisms to 

mitigate ROS effects. A similar effect is caused in the soil 

by NEEs.  

Therefore, the agricultural industry should focus on 

obtaining high yields with greater nutraceutical quality to 

promote public health. In the present review, we present the 

relationship of EEs and certain NEEs in SM production and 

review the application of elicitors in plants cultivated in soil, 

inert substrates or in vitro and the relationship between 

elicitors, EEs and NEEs on secondary metabolite production 

in plant. 

 

Sustainable Agriculture 

 

Current agriculture practices require a shift towards 

sustainability models. Plant nutrition should focus on 

obtaining high yields and crops with greater nutraceutical 

value usually high in SMs than what are currently produced. 

Plants grown under OA conditions contain more SMs than 

produced under CA (Vallverdú-Queralt et al., 2012). 

Amendments containing NEEs as rare elements (REs) are 

used in OA. These elements cause stress in the plant (Wang 

et al., 2007a) and increase the amount of SMs (Challaraj et 

al., 2010a); however, the induced stress can also result in a 

lower yield. However, OA cannot adequately satisfy the 

demand for vegetables. An alternative could be to work with 

the CA techniques with a consideration for yield and 

nutraceutical quality. Therefore, sustainable agriculture 

must be promoted. In recent years, researchers have focused 

on the relationship between fruit and vegetable consumption 

and on identifying plant compounds that promote health 

benefits (García-Mier et al., 2013). These compounds are 

categorized into three groups: alkaloids, polyphenols, and 

terpenes broadly termed as secondary metabolites (Table 1). 

The role of SMs is to protect the plant from stress. For 

example, ascorbic acid protects metabolic processes from 

damage caused by hydrogen peroxide (H2O2) and other 

toxic oxygen derivatives (Ahmad et al., 2010). Diets based 

SMs provide benefits by preventing or reducing certain 

diseases in humans. For example, green tea contains 

catechins that prevent chronic age-related disorders, such as 

cardiovascular disease (Hodgson and Croft, 2010), mediate 

vascular inflammation and atherosclerosis through different 

actions (i.e., anti-hypertensive, anti-lipemic, anti-

inflammatory, anti-proliferative and anti-thrombogenic) 

(Moore et al., 2009; Naito and Yoshikawa, 2009) and 

prevent the invasion of certain cancers (Khan and Mukhtar, 

2008).  

 

Universal Nutrient Solutions in Agriculture 

 

In 1939, Arnon and Stout published the “essential” elements 

for plants. Since then, recipes for “universal nutrient 

solutions” (UNSs) have been introduced, such as the by 

Hewitt (Steiner, 1961) and Steiner (1984). The latter recipe 

is widely used in agriculture research and is formed by 12 

essential chemical elements: N, P, K, Ca, Mg, S, Fe, Mn, B, 

Cu, Zn and Mo. Currently, UNSs are produced with the 

maximum 12 essential chemical elements. However, 

differences exist between various chemical element 

concentrations. For example, FAO UNS has 34% more N 

than of Steiner. In contrast, Kilinc UNS has 70% and 77% 

less N and K, respectively than Steiner UNS (Table 2). 

Thus, choosing the most appropriate UNS for research, 

remains difficult because of variations between solutions. 

An ionic imbalance of elements in the solution could 

potentially affect the performance or production of 

compounds of interest. 

Plant nutrition is a complex process that involves these 

essential elements in addition to carbon, oxygen and 

hydrogen. In the absence of these elements, plants cannot 

complete their life cycles (Arnon and Stout, 1939). 

Therefore, fertilization programs provide optimum amounts 

of fertilizer to increase visual quality and yield; however, 

such programs are insufficient. Changes in human 

populations have caused increases of chronic degenerative 

diseases, and a new method of producing crops is necessary 

that can potentiate yields but also produce food with high 

nutraceutical value capable of contributing to public health. 

 

Nutritional Management: Is it the Right Tool to Increase 

SMs in Plants? 

 

The increase in SMs is achieved by manipulating the ionic 

proportions of the chemical elements in the NS (Table 3). 

However, use of such techniques requires careful 

management because synergism or antagonism can be 

induced between chemical elements and can cause 

deficiencies or toxicity resulting in a decrease of yield.  
 

Table 1: Categories of secondary metabolites in plants 

and their effects on health 
 

SMs group Health benefit Reference 

Alkaloids Antioxidant Herraiz and Galisteo, 2003 
Rheumatoid arthritis Wang et al., 2007b 

Anticancer Kabashima et al., 2010 

Anti-inflammatory activity Yang et al., 2007 
Hypertension Monteiro et al., 2012 

Polyphenols Antimutagenic Feregrino-Pérez et al., 2011 

Antioxidant Krinsky and Johnson, 2005 

Anticancer Fresco et al., 2006 

Antimicrobial Veloz-García et al., 2010 

Anti-inflammatory, Anti-itch Sur et al., 2008 

Hypocholesterolemic Jiao et al., 2010 

Antidiabetic activity Kobori et al., 2009 
Terpenes 

 

Antitumor activity Lage et al., 2010 
Protection against eye diseases Krinsky and Johnson, 2005 

Antimicrobial Mathabe et al., 2008 

Antidiabetic activity Patil et al., 2011 

SMs: secondary metabolites 
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Plant Nutrition with Macronutrients 
 

Nitrogen (N) is the only element used as a cation (ΝΗ4
+) or 

anion (NO3
-). Nitrogen influences growth and 

morphological development (Gifford et al., 2008), primary 

and secondary plant metabolism (Giorgi et al., 2009). The 

link between primary and secondary metabolic pathways in 

plants is considered to occur through phenylalanine 

ammonia-lyase (PAL), which explains the concurrent 

increase of flavonoid activity with increased PAL activity 

(Lillo et al., 2008). Nitrogen is highly consumed by plants, 

and non-optimal concentrations of N can lead to losses of 

yield.  

Productivity is also limited under phosphorus (P) 

deficiency (Chen et al., 2008) and as part of energy rich 

molecules such as adenosine triphosphate (ATP), nucleic 

acids and phospholipids, it is involved in primary 

metabolism (Wu et al., 2003). The symptoms of plant P 

deficiency are the production of anthocyanins and decreases 

of development. 

Potassium (K) is essential for the synthesis of proteins, 

glycolytic enzymes and for photosynthesis (Hu et al., 2005). 

It acts as a coenzyme and activates different precursor 

enzymes of metabolic pathways (Bussakorn et al., 2003), 

and its partial or total deficiency has been associated with 

increased antioxidant enzymes (AOEs). Potassium might 

play a special role in the process of carotenoid biosynthesis 

by activating several enzymes regulating carbohydrate 

metabolism as well as the precursors of isopentenyl 

diphosphate, pyruvate and glyceraldehyde 3-phosphate 

(Fanasca et al., 2006). 

Calcium ions (Ca) have been adopted as a secondary 

messenger and represent a versatile signaling molecule in 

eukaryotic organisms (Dodd et al., 2010). It is involved in 

several plant physiological processes, acts as an indicator 

and translator, and is present in sensory proteins that decode 

specific stimuli (Batistič and Kudla, 2012). Low levels of 

Ca in the NS increase AOEs levels. However, within the 

cellular structure, non-optimal concentrations of Ca cause 

fruit damage; for example, “blossom end rot” in tomato 

results in the total loss of the product.  

Magnesium (Mg) is involved in vital plant functions 

such as 1) phosphorylation for ATP formation in 

chloroplasts, photosynthetic fixation of carbon dioxide, 

protein synthesis, chlorophyll formation, phloem 

restoring, partitioning and assimilation of photosynthetic 

products, generation of oxygen reactive forms and 

photo-oxidation of leaf tissues and activation of 

enzymes such as ribulose-1.5-diphosphate carboxylase 

(RuBP) (Cakmak and Yazici, 2010). It is also part of the 

molecular structure of chlorophyll, and its absence causes 

severe plant stress that leads to increased AOEs production. 

In certain cases, the absence of Mg in the NS reduces 

carotenes and increases AOEs, such as superoxide 

dismutase (SOD), peroxidase (POD) and ascorbate 

peroxidase (APX) (Tewari et al., 2006).  

Likely, sulfur (S) is converted to cysteine in plants, the 

main substrate for the synthesis of compounds that contain 

S (Nikiforova et al., 2005), such as methionine, glutathione, 

nicotinamide, phytochelatins and phytoalexins (Rausch and 

Wachter, 2005).  

 

Plant Nutrition with Micronutrients 

 

The application of micronutrients in plants has been 

strengthened, and the effects of these micronutrients on SM 

production depend mainly on the concentration and type of 

element (Table 4). Similar to macronutrients, inaccurate 

concentrations of micronutrients can cause crop damage 

related to toxicity because plants require micronutrients in 

small amounts. 

Iron (Fe) is an essential element and its absence 

reduces productivity in photosynthetic organisms (Jeong 

and Guerinot, 2009). Fe is a co-factor for proteins involved 

in cellular processes such as respiration, photosynthesis and 

cell differentiation (Broadley et al., 2012). It is required by 

AOEs because it catalyzes the reactions of electron transfer 

(Halliwell, 2006).  

Copper (Cu) is part of the structure of certain proteins, 

mainly those involved in photosynthesis (plastocyanins) and 

Table 2: Universal nutrient solutions for hydroponics 

 
Chemical Element Hoagland and Arnon, 1950 Hewitt, 1966 Kilinc, 2007 (1) Steiner, 1984 Kilinc, 2007 (2) FAO, 1990 Jensen, 1985 

mg L-1 

N 210 168 50 167 150 150-225 106 
P 31 41 26 31 31 30-45 62 

K 234 156 66 277 234 300-500 156 

Mg 48 36 10 49 30 40-50 48 
Ca 160 160 33 183 100 150-300 93 

S 64 48 5 111 15 NA 64 

Fe 2.5 2.8 2.6 1.33 8 3-60 3.8 
Mn 0.5 0.55 1.6 0.62 5 0.5-1 0.81 

B 0.5 0.54 0.5 0.44 1.5 0.4 0.46 

Cu 0.02 0.064 0.66 0.02 2 0.1 0.05 
Zn 0.05 0.065 1 0.11 0.3 0.1 0.09 

Mo 0.01 0.048 0.066 0.048 0.2 0.05 0.03 

NA: not available 
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respiration (cytochrome oxidase) and in the electron 

transport chain (Pilon et al., 2006). 

Zinc (Zn) is the only metal present in six enzyme 

categories: oxidoreductases, transferases, hydrolases, 

lyases, isomerases and ligases (Auld, 2001). Zn is a co-

factor of these enzymes groups involved in respiration, 

photosynthesis and hormone biosynthesis (Broadley et 

al., 2007).  

The role of boron (B) in plants include sugar transport, 

cell wall synthesis and integrity, lignification, carbohydrate 

metabolism, ribonucleic acid (RNA), indoleacetic acid, 

phenolic metabolism, and it is incorporated in the cellular 

membrane (Ahmad et al., 2009). 

Molybdenum (Mo) is necessary in biochemical and 

physiological processes (Sun et al., 2009) and is an essential 

component of mononuclear enzymes, metabolic processes 

and cycles of carbon, N and S (Liu et al., 2010). At high 

concentrations, Mo can induce the production of SMs (Yu 

et al., 2012).  

Manganese (Mn) is involved in the metabolism of 

approximately 35 enzymes (Hebbern et al., 2009), and it 

acts as a metal catalyst and protein activator (Barber, 2003). 

Manganese participates in the following processes: 

activation of enzymes involved in N metabolism (i.e., 

glutamine synthase and arginase), gibberellic acid and RNA 

biosynthesis, polymerase activation and fatty acids 

biosynthesis (Hansch and Mendel, 2009). 

 

Use of Non-essential and Beneficial Elements 

 

Beneficial elements cause growth retardation, enzymatic 

activity changes (Gopal and Rizvi, 2008) and 

photosynthesis disorders (Ganesh et al., 2008). Beneficial 

elements are used to increase SMs; for example, the content 

of α-tocopherol, asparagine and tyrosine (Hédiji et al., 

2010), isocitrate dehydrogenase (ICDH), citrate synthase 

(CS), fumarase, malate dehydrogenase (MDH) and 

phosphoenolpyruvate carboxylase (PEPC) increases in 

tomato plants (López-Millán et al., 2009) when 100 µM Cd 

is used in the NS. Hibiscus plants grown in soil with 20 mg 

kg-1 cobalt (Co), showed increased anthocyanins, and a 

similar effect occurs when 50 ppm nickel (Ni) is applied in 

the same crop (Aziz et al., 2007). In bean plants, 0.06 mM 

mercury (Hg) in the SN increases the contents of α-

tocopherol, ascorbic acid and retinol, and this response 

appears to be concentration dependent (Zengin and 

Munzuroglu, 2005). Silicon (Si) is often used as a beneficial 

elements in various crops because its effectiveness. Si 

increases biomass (Eneji et al., 2008) and provides 

resistance against plagues (Savvas et al., 2009) and heavy 

metals (Nwugo and Huerta, 2008). Si induces AOEs 

production (Soylemezoglu et al., 2009), such as SOD and 

catalase (CAT), which protect plant tissues (Al-Aghabary et 

al., 2004). In alfalfa plants with an NS that contains 1 mM 

Si, the content of SOD, CAT and POD increases and 

glutathione reductase (GR) decreases (Wang et al., 

2011a). Selenium (Se) is another BE; however, its role 

has not been completely defined (Malik et al., 2010). Se 

promotes resistance to abiotic factors (Yao et al., 2009). 

For example, when Se is used in the NS of soybean at a 

concentration of 5 µM, an increase in SOD, CAT, APX 

and glutathione peroxidase (GPX) activities is observed 

(Malik et al., 2012). 

 

Use of Rare Elements 

 

Rare elements (REs) are homogeneous elements with 

similar chemical properties and include lanthanides, 

scandium and yttrium. Their use in agriculture is 

currently increasing, and mixtures of REs can be found 

in the market. These REs increase SOD, POD, total 

phenols (TP) and carotenoid content in corn (Challaraj et 

al., 2010a), modify plant enzymatic activity (Gopal and 

Rizvi, 2008), and promote the activation of antioxidant 

mechanisms such as AOEs or SMs. The effect of rare 

elements on plants varies depending on the element and 

its dosage. For instance, cerium (Ce), lanthanum (La) 

and neodymium (Nd) can increase the yield and fruit 

quality in certain concentrations and in some crops 

(Wang et al., 2007a); however, can cause toxicity in 

high concentrations.  

In bean plants, gradually increasing La concentrations 

of the root NS (0.25, 0.5, 1, 2, 4, 8 and 12 mg L-1) results in 

increase of SOD, APX and GPX (Wang et al., 2011b). 

Taxol content increase when 1 mM of Ce4+ is applied to 

cells of Taxus cuspidata (Yang et al., 2009). In rice, the 

use of Ce4+ in the NS leads to an increase of SOD, CAT 

and malonyldialdehyde (MDA) (Xu and Chen, 2011). In 

radish plants, the use of terbium (Tb3+) (5 mg L-1) 

increases the activity of ascorbate and decreases 

guaiacol content (Wang et al., 2009).  

Rare elements also increase the absorption of ions 

that may be beneficial for SM synthesis. For example, 

Ce3+ usage results in an increase of K, Mg, Ca, Cu, Fe 

and Mn content (Wang et al., 2008), and are applied to 

infertile soils to improve the availability of essential 

elements. Similar to beneficial elements, the increased 

dosage of rare elements can be toxic to plants. 

 

Towards a New Cocktail of Necessary Nutrients (CNN) 

 

In current agricultural practices, NS with essential elements, 

and the optimal EE concentrations required to develop NS 

for commercial crops are known and have produced 

increases in yield. However, to develop horticultural 

functional foods, new techniques that produce higher 

contents of SMs in crops are necessary. One method is to 

vary EE concentrations and another method incorporates 

non-essential elements such as rare elements in the nutrient 

solution.  

Plants can absorb non-essential elements, and if 

present in an inadequate range, either in the soil or NS, 
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stress will result in ROS production. Under normal and 

primarily under stress conditions, ROS are detoxified by a 

group of enzymatic antioxidants, such as SOD, APX and 

CAT, and non-enzymatic antioxidants (Fig. 1), such as 

Table 3: Effect of different concentrations of macronutrients in plants for the production of secondary metabolites 
 

Element Plant Doses Effect Reference 

N Broccoli 
Cabbage 

Lettuce 

Olive tree 
 

Tomato 

0 
0 

0 

0 
9.58 meq L-1 

0 

3.25 mM 

Flavonoids ↑ 
Flavonoids ↑ 

Flavonoids ↑ 

Flavonoids ↑ 
Mannitol ↑ 

Flavonoids ↑ 

Carotenoids ↓ 

Jones et al., 2007 
WeiFeng, 2009 

Chiesa et al., 2009 

Fernández-Escobar et al., 2006 
Boussadia et al., 2010 

Simonne et al., 2007 

Khavari-Nejad et al., 2013 
P Lentil 

Tomato 

0 

0.7 mM 

PC and anthocyanins ↑ 

β- carotene and xanthophyll ↓ 

Sarker and Karmoker, 2011 

Khavari-Nejad et al., 2013 

K Millet 
Tomato 

Basil 
sunflower 

0 
4 mM 

5 mM 
 

25 Kg ha-1 

CAT, GPX and APX↑ 
Carotenoids ↓ 

Phenols, rosmarinic acid and anthocyanins ↑ 
soluble solids ↑ 

SOD, CAT and GPX ↑ 

Heidari and Jamshidi, 2011 
Schwarz et al., 2013 

Nguyen et al., 2010 
 

Soleimanzadeh et al., 2010 

Ca Millet 
 

Tomato 

 
Eggplant 

Tobacco 

cherry 

0 
5 mM 

0.1 mM 

 
0.5 meq L-1 

5 mM 

80 mM 

POD and CF ↑ 
PC ↓ 

SOD and DAR ↑ 

CAT, APX and GR ↓ 
Total phenols and PPO ↑ 

Total phenols, POD and PPO ↑ 

Phenols, flavonoids, anthocyanins and ascorbic acid ↑ 

Finger et al., 2006 
 

Mestre et al., 2012 

 
Pratima et al., 2002 

Ruiz et al., 2003 

Aghdam et al., 2013 
Mg blackberry 

Sunflower 

Lettuce 
 

0 

 

0 
60 mg L-1 

Carotenoids ↓ 

SOD, POD and APX ↑ 

Glutathione, SOD, APX, GPX and CAT 
Lactucopicrin ↑ 

Tewari et al., 2006 

 

Chou et al., 2011 
Seo et al., 2009 

S Arabidopsis 

 
Beans 

Peas 

0 

 
0 

200 mg plant-1 

β-alanine, putrescence, raffinose, glutamine, 

α- tocopherol and β-sitosterol ↑ 
Carotenoids ↑ 

saccharose ↑ 

Zhang et al., 2011a 

 
Juszczuk and Ostaszewska, 2011 

Scherer et al., 2006 

PC: phenolic compounds; CAT: catalase; SOD: superoxide dismutase; GPX: glutathione peroxidase; APX: ascorbate peroxidase; POD: peroxidase; DAR: 

ascorbate reductase; GR: glutathione reductase; PPO: polyphenol oxidase. ↑ represents an increase; ↓ represents a decrease 

 

Table 4: Effect of different concentrations of micronutrients on secondary metabolite production in plants 
 

Element Plant Doses Effect Reference 

Fe Rapeseed 
 

Plum 
 

sweet potato 

0 
 

0 
 

9 mmol L-1 

AP, POD, SOD and AA ↑ 
CAT ↓ 

Asparagine, alanine, glutamine, and organic acids ↑ 
SOD and APX ↑ 

CAT ↓ 

Tewari et al., 2013 
 

Jiménez et al., 2011 
 

Adamski et al., 2012 

Cu Poppy 
grapevine 

mustard seed 

rice 

2 mmol L-1 
2.5 mmol L-1 

50 µM 

50 µM 
100 µM 

Carotenoids ↑ 
Carotenoids ↓ 

Ascorbate and SOD ↑ 

Ascorbate and SOD ↑ 
GPX, APX and GR ↑ 

Cambrollé et al., 2011 
Cambrollé et al., 2013 

Feigl et al., 2013 

Thounaojam et al., 2012 

Zn wheat 

Beetroot 
Tomato 

3 mM 

50 µM 
100 µmol L-1 

POD, CAT and APX ↑ 

MDH, PEPC, ICDH and CS ↑ 
Carotenoids, APX and GR ↑ 

Li et al., 2013 

Sagardoy et al., 2011 
Cherif et al., 2011 

B Tobacco 

Orange tree 
Carrot 

Corn 

 
Linen 

0 

2.5 µM 
5 µM 

4 mM 

 
450 mM 

GDH, glucose and fructose, organic acids, phenols and amino acids ↑ 

Carotenoids, saccharose, DHAR and CAT ↑ 
AA ↓ 

SOD and CAT ↑ 

POD ↓ 
PAL, PPO and POD ↓ 

Beato et al., 2011 

Han et al., 2008 
Eraslan et al., 2007 

Esim et al., 2013 

 
Heidarabadi et al., 2011 

Mo Glycyrrhiza uralensis Fisch 

Tomato 
5.2 mg L-1 

0.5-1 mg kg-1 

GA and squalene ↑ 

Yield 

Wang et al., 2013 

Sandabe and Bapetel, 2008 
Mn Clover 

Pea 

Grape 

5.2 µM 

50 µM 

30 mM 

GPX ↑ 

GOGAT, CAT and APX ↑ 

PPO, CAT and POD ↓ 

Dorling et al., 2011 

Gangwar et al., 2010 

Mou et al., 2011 

AP: alkaline protease; POD: peroxidase; SOD: superoxide dismutase; AA: ascorbic acid; CAT: catalase; APX: ascorbate peroxidase; GPX: glutathione 
peroxidase; GR: glutathione reductase; MDH: malate dehydrogenase; PEPC: phosphoenolpyruvate carboxylase; ICDH: isocitrate dehydrogenase; CS: 

citrate synthase; GDH: glutamate dehydrogenase; DHAR: dehydroascorbate reductase; PAL: Phenylalanine ammonia-lyase; GA: glycyrrhizic acid; PPO: 

polyphenol oxidase; GOGAT: oxoglutarate aminotransferase glutamate. ↑ represents an increase; ↓ represents a decrease 
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ascorbic acid, glutathione, carotenoids and tocopherols 

(Miller, 2010).  

Non-essential elements (mainly Res) activate plant 

response genes, alter plasmatic membrane potential 

(Kenderesová et al., 2012), and induce ROS and Ca-

signaling (Rodrigo-Moreno et al., 2013) in response to ion 

effects. The production of antioxidant defenses triggered by 

the presence of certain non-essential elements depends on 

the type and concentration of the element but also on the 

plant species (Rodríguez-Serrano et al., 2009). Thus, the 

antioxidant mechanism can be inhibitory or stimulatory 

(Schützendübel and Polle, 2002). 

It has been shown that if non-essential elements are 

present in the soil or NS, can be absorbed by plants. 

Sheppard et al. (2010) found the following non-essential 

elements in tomato fruit: Ag, As, Ba, Cd, Ce, Cl, Co, Cr, Cs, 

La, Li, Mo, Na, Nb, Nd, Ni, Pb, Pr, Rb, Sb, Se, Sm, Sn, Sr, 

Tb, Th, Tl, U, V, Y, Yb and Zr. Similar results were also 

found by Matos-Reyes et al. (2010), Demir et al. (2010) and 

Bressy et al. (2012).  

Current common practice includes cultivating plants 

with recipes that contain non-essential elements in the NS. 

In China, rare elements have been used to increase the 

quality and yield of crops for several years. However, it is 

important to consider the adverse effect that NEEs have on 

crops because their optimal concentration and time of 

application and effect on each type of crop is currently 

unknown.  

Non-essential elements most likely cause a hormetic 

effect, which is a plant response to doses with low dose-

stimulation and high doses-inhibition of growth 

(Poschenrieder et al., 2013). By including NEEs such as As, 

Se, Cr, Al and Pb in the NS, yield increases, and it is likely 

stimulation in an adaptive compensation process 

(Poschenrieder et al., 2013). Studies have suggested stress-

induced growth mainly because of excess metals; however, 

few studies have analyzed the physiological state and 

molecular mechanisms of the stimulant response to 

accurately assess the action of ions in the plant. 

Based on these data, it may be possible to develop a 

recipe or "cocktail" of nutrients containing essential and non-

essential element to increase plant SMs without affecting the 

yield. Physiologically, ROS can be induced in the plant to 

activate antioxidant mechanisms, thus generating functional 

foods. However, it is difficult to calculate the amount of SMs 

to induce at the expense of yield because an increase in ROS 

is usually accompanied by plant damage. 

 

NEEs and Elicitors are Necessary for SMs Production 

 

Several methods exist that increase SMs in plants, such as 

using elicitors (Table 5). Chemical elicitors, including SA, 

JA, NO, and MeJ, may interact with receptors in plants, 

activating defense response (Ruiz-García and Gómez-Plaza, 

2013). For instance, NO is involved in abiotic stress, as are 

heavy metals (Zheng et al., 2008). NO also interacts with 

ROS in various ways and may serve as an antioxidant and 

ROS scavenger during environmental stress (Zheng et al., 

2010). Additionally, elevated NO down regulates K+/Cl- 

influx, and promotes K+/Cl- efflux and Ca2+ release during 

stomatal closure (Sokolovski and Blatt, 2004). NO regulates 

mineral absorption, particularly at concentrations of 50 µM, 

and enhances shoot uptake of Mg, Cu, Ca and Fe (Liu et al., 

2015). Moreover, NO regulates genes related to plant 

growth and ion absorption (Besson-Bard et al., 2009). MeJ 

is a naturally occurring plant growth regulator that 

modulates chlorophyll degradation and anthocyanin 

biosynthesis (Ruiz-García et al., 2012). MeJ has been also 

involved in NH4
+ accumulation in rice leaves (Hung and 

Kao, 2007). NH4
+ is released through the action of PAL, the 

 
 

Fig. 1: Metal ion signaling pathway and specific response 

mechanism: a) degradation/accumulation; b) 

activation/deactivation of compounds; c) activity increase or 

decrease; d) regulation of antioxidant enzymes. EEs: essential 

elements; NEEs: non-essential elements; ROS: reactive oxygen 

species; SOD: superoxide dismutase; CAT: catalase; APX: 

ascorbate peroxidase; GST: glutathione S-transferase; GPX: 

glutathione peroxidase; SA: salicylic acid; JA: jasmonic acid; ET: 

ethylene; H2O2: hydrogen peroxide; NO: nitric oxide 
 

 
 

Fig. 2: Elicitor chemical structures, MeJ: methyl jasmonate; SNP: 

sodium nitroprusside, a donor of nitric oxide; SA: salicylic acid 

and H2O2: hydrogen peroxide 
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first enzyme in the phenylpropanoid biosynthesis pathway 

(Hahlbrock and Grisebach, 1979). 

Plants produce signaling molecules such as SA, JA and 

NO, and the content of these molecules increase when the 

plant is under stress. Compounds such as chitosan, harpin 

and 1-methylcyclopropane have been also identified, and 

provide benefits when exogenously applied to the plant. 

These benefits include protection against plague or diseases 

or support of metabolism. These compounds mimic the 

action of signaling molecules such as SA and JA and their 

derivatives. These also interact with plant receptors that 

activate defense mechanisms, such as TP and flavonoids (Liu 

et al., 2005). Signaling molecules such as methyl jasmonate 

(MeJ), SA, H2O2 and NO currently used exogenously to 

increase the SMs content in crops, and these molecules are 

known to regulate the production of AOEs and SMs (Fig. 1). 

These molecules have different characteristics (Fig. 2), but in 

some crops, these produce similar effects (see Table 5). 

In hydroponic crops, the increased SMs in elicited 

plants are barely noticeable. However, the increase of SMs 

is significant when elicitors are used in plants growing in 

soil or compost (Table 6), and Turra et al. (2011) showed 

that compost contains REs. The increase of SMs may occur 

because soil contains certain NEEs and REs that helps to 

activate SM synthesis pathways. Rare elements are involved 

in plant metabolism and increase ion absorption, protein 

synthesis, chlorophyll a and b content, plant yield, and 

enzyme activity (POD and SOD) (Challaraj et al., 2010b). 

Plants respond differently to elicitors i.e., certain SMs 

are activated in certain plants and the same SMs can be 

deactivated in others (Table 6). Signal perception is the first 

step in the elicitation process and leads to a transduction 

cascade by which plants respond to stimuli and activate 

kinases and produce ROS, ion flow and cytoplasm 

acidification (Vasconsuelo and Boland, 2007). However, if 

the plant is elicited and the necessary material (some 

Table 5: Effects of chemical elicitors on plant antioxidant enzymes/secondary metabolites 

 
Plant Elicitor (dose) Effect Reference 

Tomato NO: 100 μM  Chelate reductase ↑ Graziano and Lamattina, 2007  

Tomato NO: 20 µM CAT, POD, SOD and APX ↑ Zhao et al., 2011 
Tomato NO: 100 μM  Chelate reductase ↑ Graziano and Lamattina, 2007  

Tomato NO: 20 µM  CAT, POD, SOD and APX ↑ Zhao et al., 2011 

Tomato SA: 100 µM CAT and POD ↑ Ortega-Ortiz et al., 2007 
Tomato SA: 10 mM Vitamin C and °Brix ↑ Javaheri et al., 2012 

Tomato SA: 500 µM  Soluble solids ↑ Yildirim and Dursun, 2009 

Tomato MeJ: 0.1 μM  Quercetin ↑ Horbowicz et al., 2011 
Strawberry MeJ: 300 μM Resveratrol ↑ Wang et al., 2007c 

Cucumber H2O2: 1.5 mM SOD, GH and APX ↑ Zhang et al., 2011b 
Cucumber H2O2: 1.5 mM POD, DHAR and APX ↑ Gao et al., 2010 

H2O2: hydrogen peroxide; NO: nitric oxide; SA: salcylic acid; MeJ: methyl jasmonate; POD: peroxidase; CAT: catalase; APX: ascorbate peroxidase; SOD: 

superoxide dismutase; GH: glutathione; DHAR: dehydroascorbate reductase.↑ represents an increase; ↓ represents a decrease 

 

Table 6: Production of bioactive compounds and/or antioxidant enzymes by elicitation in plants grown in soil, in vitro or in 

substrate 

 
Cultivation 

Medium  

Plant Elicitor Bioactive Compounds/AOEs(difference from control)* Reference 

Soil Artemisia annua 2 mmol NO Total chlorophyll, artemisinin content, POD, SOD and CAT ↑ Aftab et al., 2012 

Soil Brassicacampestris 50 mmol H2O2 CAT and MDA↑ Chun-Yan et al., 2007 
Soil Glycine max 2% (SO2+NO2) PC ↑ Hamid and Jawaid, 2009 

Soil Lycopersicon esculentum 0.5 mM SA Chlorophyll ↑ Yıldırım and Dursun, 2009 

Soil Lycopersicon esculentum 10-4 M SA Lycopene and vitamin C = Javaheri et al., 2012 
Soil Syzygium samarangense 5 mM H2O2 Flavonoids, anthocyanins, total phenols and carotenoids↑ Khandaker et al., 2012 

Soil Zea mays 100 ppm SA Chlorophyll ↑ Rao et al., 2012 
Substrate: UNS Lycopersicon esculentum 100 µM SNP Proline, chlorophyll, MDA, CAT, LOX, APX and GPX = Kazemi, 2012 
In vitro Fagopyrum esculentum 10-6 M MeJ Acids: caffeic, gallic, syringic, feluric, coumaric acid, and quercetin = Horbowicz et al., 2011 

In vitro: NS Cucumis sativus 100 M SNP SOD, CAT, GPX, APX, DHAR, AsA and GSH = Lin et al., 2012 

In vitro Physalis peruviana 0.1 mg L-1 JA or 1 Mm SA - hydroxy-withanolides E = Piñeros-Castro et al., 2009 

Substrate: UNS Glycine max 100 µM SA or SNP Flavonoids, anthocyanins, LOX and SOD = Simaei et al., 2012 

In vitro Lycopersicon esculentum 1 mM SA Total chlorophyll and carotenoids totals = Shahba et al., 2010 
Substrate: UNS Lycopersicon esculentum 100 µM SNP SOD, POD, CAT y APX = Zhang et al., 2009 
Substrate: UNS Cucumis sativus 1.5 mM H2O2 SOD, CAT, GSH-PX, GR and AsA = Zhang et al., 2011b 

*Bioactive compounds/enzymes efficiency differences, in different culture medium (significant difference p<0.05). Note: no elicitor was applied al control. 

AOE: antioxidant enzyme; NO: nitric oxide; SA: salicylic acid; MeJ: methyl jasmonate; JA: jasmonic acid; PC: phenolic content; SOD: superoxide 
dismutase; CAT: catalase; SO2: sulfur dioxide; NO2: nitrogen dioxide; NS: nutrient solution; UNS: universal nutrient solution; POD: peroxidase; GSH-PX: 

glutathione peroxidase; SNP: Sodium nitroprusside (NO donor); LOX: lipoxygenase; MDA: malondialdehyde; GPX: glutathione peroxidase; DHAR: 

dehydroascorbate reductase; GSH: glutathione; APX: ascorbate peroxidase; AsA: ascorbic acid; ↑ represents an increase; ↓ represents a decrease; = 

represents the control effect 
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chemical element) is not found in the soil or NS, the 

expected response to the stimuli will not occur. When the 

plant is elicited, one of two actions occurs: certain elements 

classified as non-essential are present in the ion flux, and 

they can stimulate SM synthesis; or NEEs present in a 

minimum quantity exert pressure in the cell that favors a 

secondary metabolism pathway. Plants cultured in substrates 

or in vitro with NS, even when an elicitor is used, do not 

indicate an increase in SMs (compared to the non-elicitor 

control), which may result from missing a certain metabolite 

biochemical pathway chemical element that is necessary for 

activation (Table 6). However, the elicitation of plants grown 

in soil usually produce a favorable response in terms of SM 

production, which may be explained by the presence of 

NEEs, such as EBs or REs, in soils, and these NEEs 

participate directly and indirectly in the production of SMs. 

 

Conclusions 
 

Plants generate SMs to protect cells from the harmful effects 

caused by ROS, and SMs also have beneficial health effects. 

OA produces horticulture products with greater amounts of 

SMs, but such agricultural techniques are inadequate to 

satisfy the global demand, whereas the NS used in CA are 

insufficient to produce fruits and vegetables with high 

nutraceutical value. The use of a technique that may 

increase plant SMs, such as varying the ionic EE ratio or 

adding NEEs in the NS, results in lower yield. Applying 

only elicitors, such as MeJ, NO and SA, forces the plant to 

produce SMs but causes lower yields. Certain NEEs can be 

included in the NS, and elicitors can be applied to plant 

foliage. Thus, NEEs could enhance ROS production and 

elicitors could activate antioxidant mechanisms. Thus, the 

production of ROS and bioactive compounds, such as 

terpenes, alkaloids and phenols, would be equilibrated.  

According to reports found in the literature, the 

application of elicitors and the presence of NEEs in the NS 

or soil are necessary to increase and potentiate SM 

production. Therefore, the coordinated combination of these 

two techniques is required for the production of SMs. 

However, ions must be identified that can be added to the 

NS without being transferred to the edible part of the plants 

or concentrations of such ions must be determined that are 

low enough to avoid health damage. In addition, this new 

cocktail must not have a negative impact on the 

environment. Thus, the new NS should increase yield and 

produce food with higher nutraceutical qualities capable of 

preventing human diseases. 
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