Effect of pH and Organic Matter on Monovalent-Divalent Cation Exchange Equilibria in Medium Textured Soils

UZMA ALTAF, HAQ NAWAZ BHATTI, GHULAM MURTAZA[†] AND M. ASIF ALI[‡] Departments of chemistry and [†]Soil Science, University of Agriculture, Faisalabad–38040, [‡]Engro Chemical Pakistan Ltd., Pakistan

ABSTRACT

A study was accomplished to investigate the effect of organic matter and pH on cation exchange equilibria in soils. The physical and chemical properties like pH_s , EC_e , soluble ions, exchangeable cation, SAR, ESP, BCSP and CEC of two medium textured soils were determined. In homovalent exchange the K_k values increased with an increase in organic matter and pH in both the soils. Kerr, Vanselow and Gapson's coefficients were calculated. In heterovalent exchange Ca^{2+} over Na^+ replacement decreased and hence the values of all the coefficients also decreased with an increase in organic matter and pH in both the soils.

Key Words: Cation exchange; Adsorption; pH; Organic matter; Medium textured soil

INTRODUCTION

The cation exchange process in soils is of great importance to the nutrition of plants. This phenomenon is better understood with the growth of soil chemistry and genetic aspects of soils.

Cation exchange is important in sustaining soil fertility, in causing and correcting soil acidity and basicity, in changes altering soil's physical properties and as a mechanism in purifying or altering percolating waters.

Several cation exchange equations are used to evaluate the contribution of exchangeable cations for nutrient supply. The primary difference between various cation exchange equations is their different assumptions about the activities of exchangeable cations. Kerr (1928) used concentration of cations in place of their activities for homovalent cation exchange. Vanselow (1932) assumed that activities of adsorbed cations were proportional to their mole fractions, which hold good for both homovalent as well as heterovalent cation exchange. Whereas, Gapon (1933) used concentration for adsorbed cations and activities for soluble cations. However various factors could alter the exchange coefficients of these equations like pH, organic matter, concentration, soil CEC and temperature.

Keeping this in view, present study was planned with the objective, to study the effect of organic matter and pH on Kerr Vanselow and Gapon coefficients in medium textured soils.

MATERIALS AND METHODS

Two soil samples one sandy loam (soil A, Pendorian soil series) and other loamy clay (soil B,

Hafizabad soil series) both having medium texture were collected. Both the soil samples were processed and analyzed by the methods of U.S. Salinity Laboratory Staff (USSLS, 1954) and Moddie *et al.* (1954) (Table I). Particle size analysis was made by Bouyoucos hydrometer method (Bouyoucos, 1962) and for textural class International Textural Triangle was followed.

Table I. Physico-Chemical characteristics of soils

Soil characteristics	Pendorian Soil	Hafizabad soil
	series	series
Clay %	17	25
Textural class	Sandy loam	Loamy clay
pHs	7.07	7.50
$EC_e (dS m^{-1})$	0.95	4.47
TSS (mmol _c L^{-1})	9.5	44.7
SAR (mmol L^{-1}) ^{1/2}	3.11	12.94
Exchangeable Cations		
Na^+ (Cmol _c kg ⁻¹)	2.11	2.95
K^+ (Cmolc kg ⁻¹)	0.14	0.41
$(Ca^{2+} Mg^{2+}) (Cmol_c kg^{-1})$	3.77	9.33
$CEC (Cmol_c kg^{-1})$	6.02	12.69
ESP %	35.04	23.25
BCSP %	100	100
Organic carbon %	0.30	0.90
Organic matter %	0.52	1.55

Both the soil samples were treated with NH₄Cl solution to remove all the cations present in the soils. After three washings with ethanol, soil samples were made homoionic with CaCl₂ solution. For homovalent exchange, adsorbed, Ca was replaced with CaCl₂: MgCl₂ (1:1) solution while for heterovalent exchange the Ca-saturated samples treated with CaCl₂:NaCl (1:1) solution. The pH levels for soil A were 7.07 control 8.0 ± 1.0 and 9.0 ± 1.0 while these were 7.5 (control), 8.0 ± 1.0 and 9.0 ± 1.0 for soil B. Organic matter was 0.52% (control) in soil A and 1.55% (control) in soil B. To get organic matter (2 & 4%) over and above the control value, well rotten farmyard manure was added in both

the soils. NaOH and HCl were used to maintain the pH. Desorbed cations were determined in the filtrates. Following equations were tested by calculating the exchange coefficient.

1. Kerr equation

a. For divalent-monovalent exchange

$$K_{k} = \frac{[NaX]^{2} [Ca^{2+}]}{[CaX][Na^{+}]^{2}} = \frac{(NaX)^{2} (Ca^{2+})}{(CaX) (Na^{+})^{2}}$$

b. For divalent-divalent exchange

$$K_{k} = \frac{[MgX]^{2} [Ca^{2+}]}{[CaX][Mg^{2+}]} = \frac{(MgX)(Ca^{2+})}{(CaX)(Mg^{2+})}$$

2. Vanselow equation

$$K_{V} = \frac{[NaX]^{2} (Ca^{2+})}{[Ca^{2+}]^{2} (Ca^{2+})^{2}}$$

$$[CaX][NaX+CaX](Na^+)^2$$

b. For divalent-divalent exchange

$$K_{V} = \frac{[MgX][Ca^{2+}]}{[CaX](Mg^{2+})}$$

3. Gapon Equation

$$K_{G} = \frac{[NaX](Ca^{2+})^{0.5}}{[CaX]^{0.5}(Na^{+})}$$

[] = concentration of cations; () = Activity

RESULTS AND DISCUSSION

Physico-chemical properties showed that CEC of soil B was greater than that of soil A (Table I), due to higher organic matter in the former soil. The high CEC and organic matter attracts strongly the polyvalent cations that reduces their exchange by low valent cation like Na^+ (Rengasamy & Olsson, 1991).

pH increase the CEC due to increase of charge density. As the pH increased the negative charge also increased which ultimately increased the adsorption of Ca^{2+} - Mg²⁺ (Murtaza, 1997).

It is apparent that Ca^{2+} preference increased as the pH increased from 7 to 8 in both the soils. The increase in value of selectivity coefficient of soil B is more than that of soil A because soil A has low CEC than soil B. Greater replacement of Ca^{2+} with Mg²⁺ is in accord with the concept that in homovalent system the preferentially adsorbed ion is usually the ion with smaller hydrated radius (Helfferich, 1962).

Both the soils showed different values of selectivity coefficient, due to low CEC of soil A compared to soil B. The low CEC soils are easily accessible to the cations with greater hydrated radii compared to high CEC soils to become neutral. Overall, it could be concluded that K_k value for Ca^{2+} - Mg^{2+} exchange differed not only from treatment to treatment but also from soil to soil having different soil properties.

 Ca^{2+} - Na⁺ Exchange. In divalent-monovalent exchange the K_v values ranges from 0.00043 to 0.00299 for soil A and from 0.000099 to 0.00398 for soil B (Table III). In Ca^{2+} - Na⁺ exchange, as pH and organic matter increased, the values of selectivity coefficient K_k, K_v and K_G decreased because pH is considered to give additional negative charge resulting in higher CEC that favour preferential adsorption of Ca²⁺ over Na⁺. Calcium preference over sodium increased with increase of pH. Specificity of adsorption of Ca²⁺ vs Na⁺ might be related to the chemical nature of the negative charge on some of the exchangers in the soil as well as to the surface charge density. (Pratt *et al.*, 1962).

An increase in organic matter decreased the K_k , K_v and K_G values. CEC of both the soils increased with the increase of organic which ultimately increased the Ca²⁺

Table II. Organic matter and pH effects on Ca²⁺ - Mg²⁺ exchange in soils

Trt.	Soils	Levels	Ec	quilibrium solution	Adsorbed bases				Equilibrium constant
			Ca ²⁺ (me L ⁻¹)	Mg ²⁺ (me L ⁻¹)	[Ca ²⁺]	CaX (me 100g ⁻¹)	MgX (me 100g ⁻¹)	[MgX]	Kerr
					[Mg ²⁺]			[CaX]	
pН	Α	7.07 (control)	1000	1200	0.833	1.94	1.76	0.9072	0.76
pН	Α	8	1200	300	4.00	2.60	1.80	0.6923	2.77
pН	Α	9	1400	350	4.00	1.56	1.64	1.0513	4.21
pН	В	7.50 (control)	1500	1500	1.000	3.0	2.0	0.660	0.66
pH	В	8	1450	650	2.231	2.1	1.2	0.571	1.27
pН	В	9	1500	700	2.140	3.0	3.5	1.169	2.49
OM	А	Control	1000	1200	0.83	1.94	1.76	0.9072	0.76
OM	Α	2%	1100	245	4.50	8.10	1.66	0.2049	0.92
OM	Α	4%	1550	250	6.20	2.10	1.10	0.5248	3.25
OM	В	Control	1500	1500	1.0	3.00	2.0	0.666	0.666
OM	В	2%	1400	450	3.1	1.96	3.4	1.730	5.36
OM	В	4%	1200	600	2.0	2.32	18	3.360	6.72

Trt = Treatment; OM= Organic matter

 Ca^{2+} - Mg^{2+} Exchange. In Ca^{2+} - Mg^{2+} exchange under different soil conditions, the selectivity coefficient K_K values ranged from 0.66 to 6.72 (Table II). An increase in pH and organic matter increased the K_k of soil. The

preference. Increase in organic matter increased the surface charge density which attracted strongly the polyvalent cations and increased the preference of Ca^{2+} over Na^+ .

Trt.	Soils	Levels	Equilibrium solution		Adso	orbed	Equilibrium constants		
			Na^+ (me L ⁻¹) (Ca^{2+} (me L ⁻¹)	NaX me 100g ⁻¹	CaX me 100g ⁻¹	Kerr	Vanselow	Gapon
pН	А	7.07 (control)	851.32	650	4.348	1.30	0.0129	0.00228	0.10002
pН	А	8.00	932.61	800	4.000	2.20	0.0066	0.00106	0.0551
pН	А	9.00	884.78	650	2.5217	2.46	0.00215	0.00043	0.0295
pН	В	7.50 (control)	870.44	875	4.1131	3.00	0.00654	0.00092	0.046
pН	В	8.00	908.70	950	3.4435	3.10	0.0044	0.00067	0.037
pН	В	9.00	856.09	525	2.5348	5.70	0.00082	0.000099	0.012
OM	А	Control	666.52	675	5.4783	2.01	0.0224	0.00299	0.1061
OM	А	2%	620.87	600	5.9131	3.40	0.0165	0.00177	0.0686
OM	А	4%	932.61	800	4.000	2.20	0.00669	0.00107	0.0551
OM	В	Control	648.26	737.5	5.4783	1.85	0.0292	0.00398	0.1240
OM	В	2%	671.09	912.5	4.6087	2.60	0.0163	0.00226	0.0797
OM	В	4%	870.44	875.0	4.1131	3.00	0.0067	0.00094	0.0465

Table III. Organic matter and pH effects on Ca²⁺ exchange in soils

Trt = Treatment; OM= Organic matter

Organic matter in soils has been known to result in greater preference for Ca^{2+} than do clay minerals (Black, 1968). Overall, as organic matter increased the preference of exchange complex for Ca^{2+} also increased with the decrease of K_k , K_v and K_G values and showed preference of Ca^{2+} over Na^+ .

REFERENCES

- Black, C.A., 1968. Soil Plant Relationship John Willey and Sons, New York, USA.
- Bouyoucos, G.J., 1962. Hydrometer method improved for making particle size analysis of soils. Agron. J., 54: 464–5.
- Gapon, E.N., 1933. On the theory of exchange adsorption in soils. J. Gen. Chem. (U.S.S.R), 3: 144–63.
- Helfferich, F., 1962. Ion Exchange. McGraw-Hill Book Co-education. Inc., New York, USA.
- Kerr, H.W., 1928. The identification and composition of the soil alumino silicate active ion base exchange and oil acidity. *Soil Sci.*, 26:358–98.

- Moodie, C.D., H.W. Smith and R.A. McCreey, 1959. Laboratory Manual for soil fertility. State College of Washington, Mineograph, Pullman, Washington, DC., USA, pp: 31–9.
- Murtaza, G., 1997. Charge characteristics of normal and salt-affected calcareous soils and their effects on Na-Ca exchange during soil reclamation. Ph.D. Thesis, Dept. Soil Sci., Uni. Agri., Faisalabad.
- Pratt, P.F., I.D. Whitting and B.L. Grover, 1962. Effect of pH on Na-Ca exchange equilibria in soils. *Soil Sci. Soc. Amer. Proc.*, 26: 227–30.
- Rengasamy, P. and K.A. Olsson, 1991. Sodicity and soil structure. Australian J. Soil Res., 29: 935–52.
- Steel, R.G.D. and J.H. Torrie, 1992. Principles and Procedures of Statistics. McGraw-Hill Book Company, Inc. New York, USA.
- USSLS, 1954. Diagnosis and Improvement of Saline and Alkali Soils. U.S.Deptt. Agri. Hand Book, 60. Washington, DC, USA.
- Vanselow, A.P., 1932. Equilibria of base exchange reactions of bentonites. Permutites, soil colloids and zeolites. *Soil Sci.*, 35: 95–113.

(Received 18 December 1999; Accepted 12 February 2000)