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ABSTRACT 
 
This work analyzes an energy consumption predictor for greenhouses using a multi-layer perceptron (MLP) artificial neural 
network (ANN) trained by means of the Levenbergh-Marquardt back propagation algorithm. The predictor uses cascade 
architecture, where the outputs of a temperature and relative humidity model are used as inputs for the predictor, in addition to 
time and energy consumption. The performance of the predictor was evaluated using real data obtained from a greenhouse 
located at the Queretaro State University, Mexico. This study shows the advantages of the ANN with a focus through analysis 
of variance (ANOVA). Energy consumption values estimated with an ANN were compared with regression-estimated and 
actual values using ANOVA and mean comparison procedures. Results show that the selected ANN model gave a better 
estimation of energy consumption with a 95% significant level. The study resents an algorithm based in ANOVA procedures 
and ANN models to predict energy consumption in greenhouses. 
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INTRODUCTION 
 

Currently, agricultural operations have to adapt to a 
more competitive environment and consequently, use new 
intelligent technologies (Mahmoud, 2004). Hydroponics and 
greenhouse production is a way of obtaining profitable 
crops (Boodley, 1996; Nelson, 2002). A sustainable crop 
production system requires keeping a high-quality harvest, 
while keeping energy and raw material consumption low. 
The agricultural sector is an important energy consumer. 
The agricultural sector is a great consumer of energy in 
Mexico, representing an increasing 5% of total electrical 
energy generated. Energy consumption increased from 
7,480,035 MWh to 7,803,778 MWh from 2006 to 2007 
(Sistema de Información Energética en México, 2005). The 
increase in energy demand under greenhouse agricultural 
production has made its use, administration and estimation 
to be essential issues (Lusine et al., 2007). Farmers have an 
option for reducing energy use by investing in intelligent 
systems (Alfons et al., 2001; Korner & Straten, 2008). 
Currently, the use of energy consumption prediction 
systems points out to the use of artificial neural networks 
(ANN). Park and Sandberg (1991) reported the use of a 
simple neural network using temperature information 
capable of predicting hourly, peak and total energy 
consumption, better than the conventional techniques based 
on regression. Bacha and Meyer (1992) discussed why 
neural networks are appropriate for load prediction and 

propose a cascading sub-network system. Srinivasan et al. 
(1994) used a four-layer multilayer perceptron to predict 
hourly load in a power system. These previous studies point 
out the importance of internal temperature as an input 
variable. Therefore, a strategy to improve energy 
consumption prediction is starting from a given temperature 
model that provides information on the expected future 
temperature. 

A lot of information on greenhouse temperature 
modeling for optimal crop development can be found in 
literature. Some of these strategies and techniques also 
applied in other areas include: linear autoregressive models 
(ARX) (Aal-Faraj & Al-haidary, 2006; Ríos et al., 2007), 
physical model (Castañeda et al., 2006; Lafont & Balmat, 
2002) and neural networks (Ferreira et al., 2002). Generally, 
these temperature models are used for planning strategies 
for optimal control; however, they do not consider the costs 
associated to water, energy and raw material usage. To 
obtain the best crop yield, climate variables have to be kept 
within an appropriate range, while minimizing production 
costs. 

The goal of this study was to develop an energy 
consumption predictor for greenhouses from a neural 
network multilayer perceptron. The predictor uses a 
cascading architecture, where the outputs of a temperature 
and relative humidity model are used as inputs for the 
predictor, in addition to time and energy consumption. 
Validation model was performed by comparing the results 
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with a nonlinear regression model and actual data, using 
analysis of variance (ANOVA) procedures and Duncan’s 
multiple range test (DMRT). 
 

MATERIALS AND METHODS 
 

Theoretical considerations. In recent years, ANN’s have 
emerged as a technology for load modeling and forecasting, 
because of their ability to learn complex, non-linear 
functions. They allow the estimation of possibly nonlinear 
models without the need of specifying a precise functional 
form. ANN can be viewed as parallel and distributed 
processing systems that consist of a huge number of simple 
and massively connected processors called neurons. Each 
individual neuron consists of a set of synaptic inputs, 
through which the input signals are received; then, the 
incoming activations are multiplied by the synaptic weights 
and summed up. The outgoing activation is determined by 
applying a threshold function to the summation. The 
threshold function can be a linear, or a non-linear function 
that decides the output of the neuron. The structure of the 
neuron is shown in Fig. 1 wherein X1, X2, Xn present the 
input of the neuron. W1, W2, Wn are their weights, θ is the 
threshold value and Y represents the output. The input to 
output relationship is characterized by:  
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Where W is the vector of synaptic weights, X is the 
input vector and θ is a constant called offset or bias, f is the 
activation function. The superscript T denotes the transpose 
operator and Y(X) is the output of the neuron. In this work, 
the activation function used is a sigmoid that has the form 
of:  
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The training of an ANN is mainly undertaken using 
the back propagation (BP) based learning algorithm, which 
is a supervised algorithm. This method requires a set of 
training patterns and their corresponding desired outputs and 
autonomously adjusts the connection weights among 
neurons. Correction of the weights is made according to 
imposed learning rules and thereby, obtains unique 
knowledge from the data. 

Although it is successfully used in many real-world 
applications, the standard back propagation algorithm (SBP) 
suffers from a number of shortcomings. One of these is the 
rate at which the algorithm converges. Several iterations are 
required to train a small network, even for a simple 
problem. Reducing the number of iterations and speeding 
learning time of NN are subjects of recent research; some 
improvements of the SBP algorithm are the gradient descent 
(Zhou & Si, 1998) and the Levenberg-Marquardt algorithms 
(Hagan & Menhaj, 1994; Parisi et al., 1996). 

The model of neural network is determined by three 

factors as the topological structure of the network, the 
neuron characteristic and the training algorithm. The ANN 
implemented in this study is a multilayer perceptron (MLP) 
with an input layer of 4 nodes, an hidden layer with a 
variable number of hidden nodes and an output layer with 
only one node. Several networks with variable number of 
hidden nodes were implemented and tested; variables in the 
input layer are temperature, humidity, time and power 
consumption; a representative schematic of the ANN used is 
depicted in Fig. 2. 

In greenhouses, the power consumption is highly 
dependent on the temperature and humidity conditions 
because in fully automated and semi-automated 
greenhouses, it determines the operation sequences of the 
various actuators (heaters, fans, humidifiers, etc.) required to 
maintain the proper crop environment. A model for 
forecasting interior air temperature and relative humidity 
(Castañeda et al., 2006) of the greenhouse was cascaded to 
the ANN predictor. The inputs variables to this model were 
wind speed (Vw), outside temperature (To), relative humidity 
(HRo) and solar radiation (Ra). Information about these 
variables was gathered and recorded using the system 
TUNA™ SCII v5.0. This model provided the presumable 
value of the environment inside regarding temperature and 
relative humidity, which are inputs to the ANN-MLP 
model. 

The third input variable of the ANN is time: the hour 
of the day and the day of the week. The hour is coded as 
reported in the literature (Dodier & Henze, 1996) by means 
of its sine and cosine values. Time is required because there 
are some tasks that must be accomplished according to a 
schedule, in this way power consumption could vary among 
the hour of the day and day of the week. The last input 
variable is the power consumption in KW h-1, since the 
predictor is designed to predict the consumption at time 
k+1, the used value for this input is the value of the 
consumption at the time k, supplied by an energy 
consumption instrument called SMEI, (Trejo et al., 2008). 
This information is of great importance since it reflects how 
the energy consumption of the installation behaves. General 
view of the cascaded predictor is presented in Fig. 3. 

In order not to saturate the conditions of the neurons, a 
data normalization is required. If neurons get saturated, then 
the changes in the input value will produce a very small 
change or no change at all in the output value. For this, data 
must be normalized before being presented to the artificial 
neural network. Data normalization compresses the range of 
the training data between 0 and 1. The normalization was 
carried out by means of the following expression:  
 

luestartingva
xx

rangexx
X n +

−
∗−

=
minmax

min )(      (3). 

 

Where Xn is the value of the normalized data and Xmin 
y Xmax are the mínimum and máximum of the entire data set, 
respectively. 
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Greenhouse description. The procedure for designing the 
energy consumption forecasting model using an algorithm 
implemented in a neuronal network was performed in a 
Venlo-type 1000 m2 greenhouse covered with a plastic 
sheet. The greenhouse floor is covered with a plastic white 
cover. The greenhouse structure is 37.1 m long, four 6.75 m 
wide sections, 4.5 m height to the ridge, and 3 m to the 
gutter. Orientation is N-S. The greenhouse is equipped with 
lateral ventilation on the four walls and the ceiling windows 
are about 62 m2 in each section. The greenhouse is equipped 
with the TUNATM SCCII v5.0 climate and irrigation control 
system developed by the Biotronics Lab., University of 
Queretaro, Mexico. The greenhouse has also an energy 
monitoring system (SMEI) that allows to check out 
electrical energy and water consumption in real time via 
Internet (Trejo et al., 2008). 
Algorithm’s description. A neural network algorithm for 
the energy consumption model in greenhouses was 
proposed. Firstly, the mean absolute percent error (MAPE) 
was used to select the best network architecture ANN-MLP. 
Then, the best network was compared with actual and 
regression data using the MAPE. Finally, analysis of 
variance (ANOVA) and Duncan’s multiple range test 
(DMRT) procedures were used to compare, verify and 
validate the models. The description of the algorithm was as 
follow:  

(a) The input and output model variable(s) were 
determined, (b) a group of data, namely B, of the input and 
output variables for past times describing the input/output 
relationship is collected, (c) B is divided into two subsets: 
training (B1) and testing (B2). This procedure requires 
independent validation data to be used in order to test the 
neuronal network capability for generalizing non-predicted 
data. Representative testing (validating) data are taken from 
the training data. It is necessary to find a balance between the 
size of the training and validation data. The validation data 
are chosen near the actual period. (d) Once the B1 and B2 
subsets of data are correctly defined, a conventional 
regression model of the training data was performed. Then, 
the consumption of energy for the testing periods was 
predicted, (e) finally, the ANN method to estimate the 
inputs/outputs relationship is used. In order to find an 
appropriate number of hidden nodes, the above steps are 
repeated using different architectures and training parameters 
for the network with one to q nodes in its hidden layer. 

If the q value is optional, then it can be modified. If 
after applying the above steps the minimum relative error is 
not obtained, the following procedures have to be followed: 
choose the architecture and the training parameters, train the 
model using the learning data (B1), evaluate the model using 
the testing data (B2), select the best network architecture 
(ANN) of the testing data with the desired error and apply 
ANOVA procedures to the formal testing data for the 
verification and validation of the ANN results. 
Accuracy measurements. Multiple determination 

coefficient (R2) is a measurement of the correlation between 
the observed and predicted values (Neter et al., 1996). Some 
measurements of variance are the standard error prediction 
(SEP) (Ventura et al., 1995), the mean square error (MSE) 
(Neter et al., 1996) and the mean absolute percent error 
(MAPE) (Griño, 1992). These methods are used determined 
the model’s capability of explaining total data variance. The 
MAPE was calculated for each model by the following 
equation:  
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Where jUe is the estimated electrical power 

consumption, jUa is the actual energy consumption value 
and N is the total number of generalized samples. The MSE, 
R2 and SEP are determined by Neter et al. (1996) and 
Ventura et al. (1995). 

In the following section the application of the ANN 
algorithm in a greenhouse will be applied. On the other 
hand, its advantages and superiority will be shown by using 
ANOVA y Duncan’s Multiple Range Test (DMRT) 
procedures. 
 
RESULTS AND DISCUSSION 
 

The recorded data of the greenhouse electric energy 
consumption were taken from February 9, 2008 starting at 
16:51 h and ended on February 15, 2008 at 15:51 h. Data 
were divided into two groups: the first 137.5 h were selected 
for network training (B1) and the last 5.5 h for testing the 
ANN (B2). Different MLP networks were generated and 
tested. The Levenberg-Marquardt back propagation 
algorithm was used to adjust the learning procedure, while 
the data taken from 10:21 to 13:51 h on February 15, 2008 
were used for testing the network. 

Once the network was trained, it could be used to 
forecast data associated with the validation set to obtain the 
corresponding prediction errors, so the performance of the 
forecasting process could be studied. The Mean Absolute 
Percentage Error (MAPE) has been widely used as a 
performance measure to examine the quality of the models 
of prediction as it repeatedly appears in the consulted 
literature (Srinivasan et al., 1994; Dodier & Henze, 1996). 
In order to determine the best ANN model, MAPE values 
were computed for each one of them; the obtained results 
are summarized in (Table I). 

Table I shows the best models and their reliability and 
performance estimators. The MLP model with the best 
results was the (4-3-1) model, in comparison with the other 
three, obtaining a 0.0586 MAPE, a 0.1875 MSE, a 0.9353 
R2 and finally a 0.08828 SEP. The results are shown in the 
ANN model graph (4-3-1) versus actual data (Fig. 4). 
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The results of the MLP network were compared with 
the non-linear regression model (Table II). It can be 
observed that the MLP output has a smaller error than the 
non-linear regression model. The error comparison of 
MAPE, MSE, R2 and SEP for the MLP and regression is 
shown at Fig. 5. 

A forecasting neural network model that uses weather 
data was proposed in (Islam et al., 1995). The model was 
capable to predict electrical energy monthly demand, where 
a MAPE of 2.03% was accomplished; however, the 
prediction errors are more sensitive to temperature. The 
aforementioned work uses data sets obtained in different 
countries under different social and economical behaviors. 
For this reason, it is not easy to carry out a quantitative 
comparison, because the data sets used in other works are 
different from the one considered here. The results 
presented in this work allow energy consumption prediction 
with a good level of reliability. 

Analysis of variance: validation and verification. The 
selected ANN’s results were estimated and the regression 
method and the real data were compared by using ANOVA 
procedures. The experiment was designed in such way that 
variability was derived from external systematically-
controlled sources. Time is the common external source of 
variability in the experiment and can be systematically 
controlled by blocking (Montgomery, 1999). Therefore, 
one-way ANOVA was used. The results are shown in Table 
III. The hypothesis test was defined as follow:  
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Where 1µ , 2µ  and 3µ  are average values obtained 
from the regression model, actual data and the ANN model. 
From Table III, it can be concluded that the null-hypothesis 
is rejected with a significant level α = 0.05, since 

9.433,2,05.0 =f , 12.0=fcv  and 4.9 > 0.12. 

Table I. Coefficient of determination and error 
estimators for different MLP models 
 
Model  MLP R2 MAPE SEP MSE 
4-5-1 0.9107 0.0662 0.108241 0.2528 
4-4-1 0.9009 0.0692 0.114008 0.2804 
4-3-1 0.9353 0.0586 0.08828 0.1875 
4-2-1  0.9030 0.0697 0.112805 0.2745 
 
Table II. Comparison of measured and estimated 
values using Neural network and Regression models 
 
Hour Meassured Neural Network Regression 
137.5 4.1768 4.2456 3.5180 
138.0 4.3275 4.5623 4.1169 
138.5 4.2967 4.3624 4.1884 
139.0 4.1924 4.2453 4.1728 
139.5 3.9340 4.1230 4.1213 
140.0 3.7397 3.9923 3.9669 
140.5 3.6858 3.8742 3.8240 
141.0 3.9989 4.1210 3.7771 
141.5 4.1242 4.3215 4.0058 
142.0 3.9714 4.2105 4.0784 
142.5 4.1687 4.3548 3.9831 
143.0 4.3379 4.5521 4.0990 
MAPE error  0.0626 0.0921 
 
Fig. 1. Neural model 
 

Fig. 2. A typical feed forward neural network (MLP) 
 

 
 
Fig. 3. Proposed cascading predicting model structure 
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Duncan’s multiple range test (DMRT). Before the DMRT 
is performed, the standard deviation for each treatment has 
to be calculated as:  
 

a
errorMSB iy

)(
=                                        (6). 

 

Where a  is the number of replicates or observations 
for the three treatments (actual, ANN & regresión). Then, 
the state values for Rp are calculated as 

( ) iyBfprRp ,α=  (10). ( )fpr ,α  is obtained from 
the DMRT table. After means treatment classification, each 
treatment can be compared as follow:  
 

05944.0=iyB  

 2.877)33,2(05.0 =r  

1710.005944.0877.2)33,2(05.02 === xBrR iy . 
 

Comparing treatments 2 and 3 
2595.09876.32471.4 =−=  

2595.0 > 1710.0    32 µµ ≠→ . 
 

Comparing treatments 1 and 2 
1676.00795.42471.4 =−=  

1676.0  < 1710.0  21 µµ =→ . 
 

From the above results, it can be observed that only 
one third of the mean (actual data) and the second treatment 
(the selected ANN) equals to 05.0=α . This indicates 
that the average of energy consumption estimated values for 
the selected ANN and the real data were approximately 
similar with a 95% confidence level. Therefore, results from 
the ANN are significantly better than the obtained by 
conventional regression. 
 
CONCLUSION 
 

The method for the prediction of energy consumption 
from a multilayer perceptron neural network was proven. 
The predictor uses a cascading architecture. Using ANOVA 
procedures, this study proved the advantages of the ANN in 
comparison with real data and the conventional regression 
model data. This is one of the first studies presenting an 
algorithm based on ANOVA and ANN models to predict 
the energy demand in greenhouses. The (4-3-1) MLP built 

model produced better results, with an error estimation of 
0.0586 in the testing data. The ANOVA statistical method 
was used to compare the neuronal network and the 
regression model results versus real data. It was found that 
with an 05.0=α , there was significant difference among 
treatments. Therefore, the DMRT was used to find the 
closest model to the real data, considering a significance 
level of 95%. The Energy Consumption Prediction model 
presented in this work will be the base for the design of new 

Table III. ANOVA table for comparison of regression, actual data and neural network 
 

Summary 
Groups  Count   Sum (kw/h)   Average (kw/h) 
Meassured  12   48.954   4.0795 
Neural Network  12   47.851   4.2471 
Regression  12   50.965   3.9876 
Source of variation Sum square   Degree of freedom Mean square   Fcv F(α=0.05) P 
Between groups(treatment) 0.4153  2.0 0.2076  0.12 4.9 0.0137 
Within groups 1.3991  33 0.0424     
Total 1.8144   35          

Fig. 4. Measured and predicted values of energy 
consumption in a Venlo-type green house 
 

 
 

Fig. 5. Comparing regression and MLP errors 
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intelligent climate controllers. To obtain the best crop yield, 
climate variables have to be kept within an appropriate 
range, while minimizing production cost. 
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