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Abstract 
 

Microorganisms are the richest source of phytase which catalyze hydrolysis of phytate to myo-inositol and phosphate. 50 

Actinomycete isolates were isolated from heated soil, sand, wastewater, animal faces and some plant ecological wastes on 

Starch nitrate agar containing 15 µg / mL of antibiotics (Tetracycline + Amphotericin B, w/w). Out of 50 Actinomycetes 

isolates, 20 isolates (40%) produced extracellular phytase enzyme on solid medium containing wheat bran as carbon source. In 

liquid medium, the phytase activity was measured as U/mL and the most active isolate in phytase production was R10. Using 

morphological, physiological and biochemical studies, it was identified as Streptomyces sp. Using 16S rDNA analysis, it was 

identified as S. luteogriseus R10. Growth in medium containing 1% Na-phytate (pH 6.5) at 40°C for 7days increased phytase 

production. The maximum phytase activity was achieved using wheat bran, straw, rice husk and hay after seven days of 

incubation at 40°C but low activity was obtained using Sawyer and baggage as a carbon source. The molecular weight of the 

purified phytase is 65 kDa and it exhibits optimum activity at pH 5 and 45°C. All tested metal ions at 10 mM enhanced 

phytase activity except Ba
2+

, Co
2+

, Cu
2+

, Ag, Fe
3+

 and Hg
2+

. Improvement of phytase production was carried out using 

protoplast fusion between S. luteogriseus R10 and S. niveus MM1. Fusant F7 was the best phytase producer (3 time higher) 

compared to its parents. © 2015 Friends Science Publishers 
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Introduction 
 

For humans and animals, legumes, cereals and oilseed crops 

are the main source of nutrients, which contain phytic acid 

as storage form of phosphorus (Reddy et al., 1989). To 

satisfy phosphorus requirement, inorganic phosphate is 

added to monogastric animals diets because they cannot 

metabolize phytic acid present in their diet. In monogastric 

animals, phytic acid is chelating various metal ions 

including calcium, copper and zinc (Graf, 1983). Therefore, 

phytic acid hydrolysis into less-phosphorylated myo-inositol 

derivatives using phytase is of great interest. Phytase can be 

used to improve the nutritional value of feed and/or to 

decrease the amount of phosphorus excreted by animals. 

Phytase enzyme produced by bacteria is extracellular 

which are more appropriate than the intracellular 

phytase produced by yeast in breaking down phytic acid 

(Konietzny and Greiner, 2004). The aim of the present 

study was isolation and identification of thermo-stable 

phytase producing bacterium and factors affecting 

production were studied. Phytase was purified and 

characterized. Enhancement of enzyme production was 

carried out using protoplast fusion to solve the difficulty of 

low level of phytase in primitive natural microbes. 

 

Materials and Methods 
 

Bacterial Isolation 

 

Soil, sand, plant materials, wastewater and plant waste 

products from farms in Huda Al Sham, Saudi Arabia were 

collecting and transported in sterile plastic bags to the 

Microbiology lab. Serial dilutions were prepared and about 

0.1 mL of each sample was spread on starch nitrate medium 

(Shirling and Gottlieb, 1966) which composed of g/L: 20 

Starch, 1.0 KH2PO4, 0.5 MgSO4.7H2O, 0.01 FeSO4.7H2O, 

3.0 CaCO3, 2.0 KNO3, 0.5 NaCl and 1 mL trace salt 

solution) and for solid medium preparation, 20 g/L agar was 

added. Filter sterilized mixture of 

Tetracycline+Amphotericin B (w/w) was added at 

concentration 15 µg/mL to the prepared medium (Aly et al., 

2011b). Incubation of the plates was at 37°C for 7 days and 

the purified colonies were streaking on ISP2 medium 

composed of g/L: 4 yeast extract, 4 glucose, 10 malt 

extract, 2 CaCO3 and 20 agar and maintained at 4°C 

until used. 
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Bacterial Growth and Screening Conditions 

 

Several Actinomycete isolates were screened on modified 

LB with wheat bran medium (LBWB medium). LB medium 

composed of (g / L) 10 g tryptone, 10 g NaCl and 5 g yeast 

extract in addition to 50 g of wheat bran, pH was adjusted to 

pH 7.0. Agar (20 g / L) was added, when solid agar medium 

was needed. In liquid broth medium, the bacterial isolates 

with phytase activities were cultivated in 50 mL LBWB 

broth medium in 250 mL Erlenmeyer flasks. Each flask was 

inoculated with 2mL (4×10
6
 CFU∕mL) of bacterial 

suspension, previously grown at 37°C for 2 days at 200 rpm 

in starch nitrate broth medium. The inoculated flasks were 

maintained for 5 days at 37°C on a rotary shaker (200 rpm). 

After centrifugation at 10,000 rpm for 15 min, cell-free 

supernatant was for phytase assay. 

 

Phytase Assay 

 

Cell-free supernatant was used for determination of phytase 

activity by measuring the amount of phosphorous released 

from Na-phytate, which develops a color with ammonium 

molybdate. The color density was quantified 

spectrophotometrically at 700 nm (Chi et al., 1999). Under 

assay conditions, one phytase unit was the amount of the 

enzyme, released of 1 nM of inorganic phosphate / min. 

 

Optimization of Phytase Production Process 

 

In liquid medium, the effect of different factors on growth 

(optical densities at 540 nm) and phytase production was 

determined (El-Sabbagh et al., 2003). LB broth medium 

with different concentrations of Na-phytate was prepared. 

The inoculated flasks were incubated at 37ºC and 200 rpm 

for 5 days. Effect of different incubation temperatures (20-

50°C) and medium pH (6.0-8.0) were determined after 5 

day of growth in LB medium with 1% Na-phytate. At the 

end of growth period, growth and phytase were measured. 

Effect of different incubation periods ranging from 1 to 7 

days of growth in modified LB medium (pH 6.5) at 40°C 

and 200 rpm was determined. All the experiments were 

carried out in triplicate and averages were reproduced. 

 

Phytase Production Using Various Waste Products 

 

Some agriculture waste products were collected, dried, 

powdered and sterilized using the autoclave. They were 

used as carbon source as described by Lanciotti et al. (2005) 

and phytate hydrolysis was determined after 7 days of 

incubation at 40°C and 200 rpm. 

 

Enzyme Purification and Molecular Weight 

Determination 

 

Proteins in the culture filtrate were collected after 80% 

Ammonium sulfate precipitation at 4°C. The collected 

precipitate at 10,000 rpm was dissolved in phosphate 

buffers (pH 7), dialyzed against the same buffer for 2 days 

(El-Sabbagh et al., 2003), concentrated under vacuum, 

applied to a column (30 × 1.5 cm) of diethyl aminoethyl 

cellulose (DEAE cellulose) and eluted using 1 M NaCl in 

phosphate buffer (80 mL / h). The eluent was collected in 5 

mL fractions. The active fractions with phytase activity 

were collected and concentrated under vacuum. The 

concentrate was applied to carboxymethyl-cellulose 

followed by Sephadex G75 column and elution was carried 

out using phosphate buffer. The active fraction was 

collected, lyophilized and was analyzed. Gel electrophoresis 

was carried with 15% SDS polyacrylamide electrophoresis 

at room temperature where 20‒30 μL (40 μg / well) from 

the protein standard (Merck) were applied and gel was 

stained with Coomassie brilliant blue R-250. 

 

Characters of the Pure Phytase Enzyme 

 

Using the standard phytase assay conditions (Chi et al., 

2008), effect of different pH values, 3‒9, on phytase was 

determined after the pure enzyme suspension in 0.2 M 

acetate buffer (pH 3‒6) or 0.2 M Na2B4O7.10 H2O / H3BO3 

buffer (pH 7‒10). Effect of temperature ranged from 20-

70ºC on the purified enzymes was determined in the 

selected buffer. The pre-incubated enzyme at 37°C was used 

as a reference to calculate activity. Effect of some additives 

incorporated in the reaction mixture including some metal 

ions and EDTA on the enzyme assay was studied and the 

relative activities were compared with the activity obtained 

for control (without additive) (El-Sabbagh et al., 2003). 

 

Characterization of the Selected Actinomycete Isolate 

(Taxonomical Studies) 

 

The selected phytase producing actinomycete isolate was 

characterized and identified. It was grown on starch nitrate 

agar medium for fresh prepared culture. Gram and 

endospore stains were carried out and bacterial morphology 

was conducted using light and electron microscopy (XL30-

ESEM environment scanning electron microscopy). 

Physiological and biochemical characters in addition to 

chemical analysis of the whole cell sugar composition and 

type of the diaminopimelic acid isomer were determined as 

described by Aly et al. (2011a, 2012) and Hasegawa et al. 

(1983), respectively. Cell fatty acids and phospholipids were 

extracted and determined using gas chromatography and 

two-dimensional thin-layer chromatography (Butte, 1983; 

Hoischen et al., 1997). 

 

Phylogenetic Analysis of 16S rDNA Sequence 
 

QIAamp DNA Mini Kit was used for genomic DNA 

extraction of the selected isolate R10. The forward primer 5' 

AGTTTGATCATGGTCAG-3' and reverse primer 5' 

GGTTACCTTGTTACGACT 3' were designed (Weisberg 
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et al., 1991) and 16S rDNA gene was amplified, sequenced 

and the DNA sequence was compared to the GeneBank 

database. 

 

Improving Phytase Production 

 

Improving phytase production using protoplast fusion (Yari 

et al., 2002; Aly et al., 2011a, b) between Streptomyces R10 

and S. niveus (MM1) which was highly resistant to NaCl 

(Aly et al., 2003) was carried out. On Mueller Hinton 

medium, antibiotic pattern using paper disc diffusion assay 

for the two tested bacteria were as the following: 

Streptomyces R10 was strep.
- 
tet.

 +
 and S. niveus was strep.

+ 

tet
-
. The two species were grown at 37°C for 24 h in starch 

nitrate broth medium (Shirling and Gottlieb, 1966). From 

the previous culture, 1 mL was mixed with 10 mL of a 

starch nitrate broth with 0.5% (w / v) glycine in100 mL 

conical flask and the flasks were incubated at 30°C 

overnight. The growth was collected by centrifugation 

(5,000 rpm for 15 min) and sonicated for 3min for 

protoplast formation (Matsushima and Baltz, 1985). The 

percentages of real protoplasts for each species were 

calculated (Aly et al., 2011b) and the obtained protoplasts 

were mixed gently in 3 mL of Modified R2 sterile medium 

containing the appropriate concentration of tetracycline 

(1µg / mL) and streptomycin (5 µg / mL). After 7 days of 

incubation at 30°C, the obtained fusants were picked and 

maintained on the same medium. 

 

Statistical Analysis 

 

Mean of three replicates and standard deviations were 

recorded. Data were statistically analyzed and difference 

between mean values was determined using Student’s t-test. 

The differences were significant when P<0.05. 
 

Results 
 

This research aimed to isolate many Actinomycete isolates, 

producing phytase, which can hydrolyze some agricultural 

wastes. In this connection, 50 bacterial isolates with 

different colony colors and shapes were obtained from soils, 

sand and plant materials in addition to ecological wastes on 

starch nitrate agar-containing antibiotic. All the isolates 

were grown on LBWB agar medium and 20 isolates out of 

50 grow well on the previous medium hydrolyzing the 

phytic material by phytase, which was detected as pale clear 

zone around the colony (Fig. 1). Diameter of the clear zone 

was differed for each organism. Six phytase producing 

bacterial isolates were selected and grown in liquid broth 

medium (Table 1). 

In liquid medium, the most active isolate in phytase 

production was isolate R10, which was isolated from 

decaying wood sample on SN agar with antibiotic. The 

morphology of the phytase-producing bacterium and Gram 

reaction were determined after examination with light 

microscope using oil emersion lens. It was belonging to 

filamentous Gram + ve bacteria with gray color (Fig. 2). 

The isolate R10 was identified according to morphological, 

physiological and biochemical characters (Table 2, 3, 4 and 

5). Cell wall composition and the characteristics sugars, 

lipids and fatty acids were determined (Table 6). Presence 

of L-isomer of diaminopimelic acid (L-DAP) and glucose 

indicated a wall chemotype IV and whole cell sugar pattern 

as type A, while analysis of phospholipids indicated 

phospholipids type PII. Saturated fatty acids with no 

mycolic acids were detected using gas chromatograpy. The 

phylogenetic tree based on 16S rDNA sequence using 

neighbor joining tree method was drowning (Fig. 3). 

Phytase production or / and bacterial growth varied 

with phytate concentration, initial pH of the medium, 

incubation temperature and incubation period. The best 

phytate recovery was 1.0% (Fig. 4). The effect of 

temperature and pH on phytase production was showed in 

Fig. 5 and 6, where incubation at 40°C and initial pH 6.5 

recorded maximum phytase production. However, phytase 

production dropped significantly at pH 9.0 and no 

production was observed at pH 9.5. The maximum phytase 

production was recorded after 7 days of growth at 40°C 

(Fig. 7). Different waste product including hay, straw, and 

bran (Fig. 8) were used as substrate (1% w / v) for phytase 

production. Among all the substrates, the maximum phytase 

activity was observed with bran and straw. The lowest 

production was observed for sawyer and baggage. 

The selected isolate R10 was grown using the best 

conditions of phytase production. The enzyme was 

precipitated and purified using different column 

chromatography and profile of elution was determined. 

 
 

Fig. 1: Screening of some Actinomycete isolates on 

LBWB medium for phytase production after 5 days of 

growth 
 

 
 

Fig. 2: The selected Actinomycete isolate R10, A: under 

scanning electron microscope (x 20 000), B: under light 

microscope x1000, C: after growing on Oat meal agar medium 

for 10 days at 37°C 
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The active fractions that showed the maximum phytase 

activity were collected, lyophilized and used for enzyme 

characterization and molecular weight determination. 

Phytase molecular weight was 65 kDa, detected using gel 

electrophoresis (Fig. 9) and exhibits optimum activity at pH 

5.0 and 45°C (Fig. 10). Phytase activity was significantly 

affected by most of the ions tested and all these ions at 10 

mM acted as enhancer for the phytase activity except Ba
2+

, 

Co
2+

, Cu
2+

, Fe
2+

, Fe
3+

, Li
+
 and Hg

2+
 (Table 6). 

Protoplast fusion between the identified S. 

luteogriseus R10 and S. niveus MM with two different 

antibiotics resistance profiles (10 μg / mL tetracycline and 

400 μg / mL streptomycin), was carried out using PEG 

6000.The regenerated protoplast percentage of the two 

species was 88% and 80%, respectively. Ten recombinant 

fusants were obtained and fusant F7 showed higher phytase 

production compared to the two wild types (about 3 fold 

increases) (Table 7). 

 

Discussion 
 

Different actinobacteria were obtained from the collected 

samples on agar medium containing antibiotics. Addition of 

antibiotics to growth medium or samples heating prevent the 

growth of unwanted bacteria and allow antibiotic resistant 

actinobacteria to dominate (Velho-Pereira and Kamat, 

2011). Similarly, on modified glycerol arginine agar, an 

initial screening was performed to isolate common 

Actinomycetes and on modified medium to isolate rare 

Actinomycetes (Ghorbani-Nasrabadi et al., 2012). 
In solid LBWB agar medium containing wheat bran as 

inducer, all Actinomycete isolates were screened for phytase 

production. As it is well known, the phytase enzyme was 

inducible, and the presence of phytate, wheat bran or some 

other inducer in the medium is necessary for enzyme 

formation (Tambe et al., 1994; Konietzny and Greiner, 

2004). In bacteria, induction and expression of phytase are 

regulated and are not controlled uniformly among different 

bacteria. Phytase may not require during balanced bacterial 

growth but synthesized under energy and / or nutrient 

limitation (Konietzny and Greiner, 2004). In this work, 40% 

of the screened actinobacteria were phytase-producing and 

this activity was detected as clear zones accompanying the 

growth in solid agar. Similarly, 46.3% of the Actinomycete 

isolates had phytate-degrading capacity (Ghorbani-

Nasrabadi et al., 2012). Out of 21 bacterial isolates from 

Table 1: Source, colony color and phytase production by the most active Actinomycetes in phytase production 
 

Bacterial isolate Source of isolation Colony color Phytase production 

On solid medium In liquid medium 

Presence of clear zone Lipase activity (U /mL) 

R1 Wastewater White + 1.0±0.09 
R10 Decaying wood Gray +++ 1.9±0.05 
R24 Contaminated soil White ++ 1.7±0.03 
R36 Contaminated soil Yellow + 1.7±0.01 
R47 Contaminated soil Pink + 1.1±0.04 
R 49 Animal feces Yellow + 1.1±0.05 

+: Moderate production, ++: High production, +++: Very high production 

 

Table 2: Cultural characteristics of the Actinomycete isolate R10 grown on different agar medium at 30°C 
 

Agar medium Growth Color of aerial mycelium Color of substrate mycelium Presence of soluble pigment 

Glycerol-asparagine agar (ISP-5) Moderate Dark gray Yellow + 

Glucose Asparagine agar Heavy Dark gray Yellowish gray + 

In-organic salts-starch iron (ISP-4) Moderate Pale gray Yellowish-white + 

Tyrosine agar (ISP-7) Scanty Yellowish gray Pale yellow + 

Yeast extract-malt extract (ISP-2) Moderate Yellowish brown Yellow + 
Oatmeal agar (ISP-3) Moderate White Pale yellow + 

+: Soluble pigment present 

 
 

Fig. 3: Phylogenetic tree based on 16S rDNA sequence 

comparisons of Streptomyces R10, using neighbor 

joining tree method, maximum sequence difference 

=0.002 
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water habitats, eight showed phytase production by clear 

zone formation around growth on solid agar medium 

(Shamna et al., 2012). Furthermore, 67 isolates of soil 

actinomycetes were potentially producing extracellular 

phytate-degrading activity and two isolates of the genus 

Streptomyces were the most active in phytase production 

(Ghorbani-Nasrabadi et al., 2012). 

Phytase detection was obtained using plate-clearing 

technique and / or measuring the enzyme activity in liquid 

medium. For bacteria, growth on agar medium is usually 

easier than in a liquid broth medium (Choi et al., 2001), 

thus, no further assessment was conducted for isolates that 

could not grow or showed weakly growth on solid agar 

medium containing wheat bran as source of phytate. The 

lack or weak phytase activity in some Actinomycete isolates 

may be due to a loss of trait in the isolate or the used culture 

conditions were not effective in inducing phytase. Hence, at 

this point, it is unclear whether phytate hydrolysis is a 

common trait within the Actinomycete group. Generally, 

some bacterial enzymes are mostly cell associated, whereas 

the phytases obtained by fungi are extracellular. Concerning 

the isolate R10, phytase production was extracellular in the 

culture filtrate and it was identified using morphological, 

physiological, biochemical analysis in addition to 16S 

rDNA analysis. According to morphological description 

(Pridham and Tresner, 1974), biochemical comparison and 

physiological analysis of genus Streptomyces with other 

described isolates (Williams et al., 1989), the isolate R10 

belongs to the genus Streptomyces. Identification was made 

using 16S rDNA, a powerful tool for deducing evolutionary 

relationships and phylogenetic among eukaryotic 

organisms, bacteria and archaebacteria (Olmezoglu et al., 

2012), was used. The 16S rDNA sequence reported that 

isolate R10 was closely related to S. luteogriseus by 93% 

and can be identified as S. luteogriseus R10. 
The knowledge on the participation and role of 

Actinomycetes in hydrolysis of phytate and organic 

phosphorylated compounds is extremely limited and is 

strongly dependent on the Actinomycete strain as well as 

media composition. Furthermore, the importance of 

Actinomycetes in dephosphorylation of soil organic 

compounds needs to be elucidated in further studies. The 

results of Ghorbani-Nasrabadi et al. (2012) showed 

Actinomycetes as a source of phytase. On contrast, it was 

clear that production of phytases were characterized from 

some Gram-negative and positive bacteria including 

Klebsiella, Enterobacter, Bacillus and Pseudomonas (Yoon 

et al., 1996; Greiner et al., 1997; Richardson and Hadobas, 

1997; Kerovuo et al., 1998; Richardson et al., 2001). 

Although, phytases have found in some animal tissues and 

in plants, phytases from bacteria have many commercial 

applications due to substrate specificity, catalytic efficiency 

and resistance to proteolysis (Konietzny and Greiner, 2004). 

In liquid medium, maximum enzyme production by S. 

luteogriseus R10 was occurred using LB medium 

continuing 1% Na-phytate as inducer, incubation of flasks at 

40°C, initial pH 6.5 and 200 rpm after 7 days. 

Cladosporium sp. FP-1 showed maximum phytase 

production in a medium containing 1.0 g phytate (Quan et 

al., 2004). Temperature is one of the most critical 

parameters to be controlled in any bioprocess and the 

optimum temperature for production of phytases by many 

microorganisms was 25-37°C (Vohra and Satyanarayana, 

Table 3: Morphological character of the selected isolate 

R10 
 

Tested character Results 

Gram stain Gram positive 

Source of isolation Decaying  wood 

Motility of spore Absent 
Shape of spore Cylindrical (5-6 and, 6-9 µm) 

Spore chain Spiral chain 

Spore Surface Hairy 
Number of spore / chain 5-20 

Aerial and substrate hyphae Well developed 

Zoospore, sporangium, sclerichia, 
fragmented mycelia 

Absent 

 

Table 4: Physiological characteristics of the isolate R10 
 

Character Reaction Character Reaction 

Melanin pigment production +ve Tolerance to NaCl 5-10% 
Enzyme activities:  pH range 6-10 

Proteolysis +ve Growth temperature:  15-45ºC 

Lecithinase -ve Resistance to antibiotic  
Lipolysis +ve Penicillin  

Chitinase +ve Cephalosporine + 

Gelatinase +ve Kanamycin + 
Pectinase +ve Rifampin + 

H2S Production -ve Tetracycline + 

-ve: negative results, +ve: positive results, ++: Growth, +: Resistance 

 
 

Fig. 4: Effect of different concentration of  phytate on 

growth and phytase production by the selected strain of 

Actinomycetes isolate R10 
 

 

 

Fig. 5: Effect of different temperature on growth and 

phytase production by the selected strain of 

Actinomycetes R10 
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2003). At pH 6.5, maximum phytase production was 

recorded and increasing medium pH decreased the activity 

of the enzyme due to charges on the amino acids within the 

active site and no formation of the enzyme-substrate 

complex. Similar results were obtained for phytase of 

Pseudomonas spp, (Sasirekha et al., 2012). For 

Enterobacter sp., the optimum phytase production was at 

pH 5.5 after 3 days of growth at 37°C (Yoon et al., 1996). 

Phytase of Streptomyces was very specific for phytate and 

efficiently hydrolyzed phytate of wheat bran, hay, straw, 

rice hush sawyer and baggage. Similar results were obtained 

by Kim et al. (1998) where, phytase was very specific for 

phytate and had little activity on other phosphate esters and 

efficiently hydrolyzed phytate in oat flour rice and wheat. 

Using the best conditions for phytase production, the 

enzyme was collected and purified using different column 

chromatography. After purification, phytase has molecular 

weight of 65 kDa and its activity was not significantly 

affected by most of the ions tested. However, EDTA, Ag
+
, 

Cd
2+

, Hg
2+

, Cu
2+

 inhibit the phytase activity. Similarly, two 

species belonging to the genus Streptomyces produced 

phytase with optimum temperature of 55°C and 37°C and 

optimum pH values of 5 and 7 (Ghorbani-Nasrabadi et al., 

2012). The purified enzyme of Bacillus had maximal 

phytase activity at pH 7 and 55°C and required calcium for 

its maximum activity but was readily inhibited by EDTA 

(Kerovuo et al., 1998). The optimum pH of phytases from 

E. coli, Klebsiella or Aspergillus were in the range 4.5-5.5 

(Greiner et al., 1993; Wyss et al., 1999, Sajidan et al., 2004; 

Elkhalil et al., 2011). In contrast to those phytases, Bacillus 

phytase displayed a narrow pH optimum between 7.0 and 

7.5 (Kerovuo et al., 1998; Kim et al., 1998). 

Some bacterial phytases with pH optimum of 6.0 to 

8.0 benefits in poultry feed additives where their pH 

optimum was close to the physiological pH of the poultry 

crop (Kim et al., 1998; Choi et al., 2001). In contrast, 

purified phytase from Bacillus sp. DS11 had molecular 

weight of 44 kDa by SDS-polyacrylamide gel 

electrophoresis and optimum temperature of 70°C in 

presence of calcium ions but its activity was greatly 

inhibited by metal ions such as Cd
2+

, Mn
2+

 and EDTA (Kim 

et al., 1998). Moreover, phytase with lower MW of 32.6 

kDa, optimum temperature of 40°C, optimum pH of 3.5, 

stimulated by dithiothreitol and 2-mercaptoethanol, and 

inhibited by Ba
2+

 and Pb
2+

 was obtained (Quan et al., 2004). 

Phytases from Enterobacter sp. and Bacillus subtilis were 

inhibited by 1 mM EDTA (Yoon et al., 1996; Kerovuo et 

al., 1998). On contrast, Greiner (2004) found that phytase 

was not inhibited by EDTA at concentration of 1 mM 

whereas phytase from A. niger van Teighem was enhanced 

by EDTA (0.1-2.0 mM) for about 50% (Vats and Banerjee, 

2002). The maximal phytase activity of Enterobacter sp. 4 

was observed at pH 7.0-7.5 and at 50°C but above 60°C, the 

enzyme activity was gradually lost and was inhibited by 

each addition of 1 mM Zn
2+

, Ba
2+

, Cu
2+

, Al
3+

 and EDTA 

(Yoon et al., 1996). 
Furthermore, enhancement of phytase production 

using protoplast fusion was carried out between the 

identified Streptomyces and Streptomyces niveus, which 

showed different antibiotic resistance profiles. Percentage of 

successfully regenerated protoplasts of the two used 

Streptomyces was 88% and 80%, respectively. Out of 10 

recombinant fusants obtained, one (Fusant F7) showed 

higher phytase production compared to both parents (3 

Table 5: Utilization of different carbon and nitrogen 

sources using the selected isolate R10 
 

Carbon source  Utilization Nitrogen source Utilization 

Positive control (glucose) ++ NaNO3 ++ 
Negative control -ve NH4NO3 ++ 

D-mannitol ++ KNO3 ++ 

Glycerol ++ NH4OH ++ 
Raffinose -ve NH4Cl ++ 

D – galactose -ve NaNO2 -ve 

Sucrose ++ Phenyl alanine + 
Fractose ++ Valine + 

D-xylose ++ Peptone + 

 

 
 

Fig. 6: Effect of different initial pH value on growth and 

phytase production by the selected strain of 

Actinomycetes R10 

 
 

Fig 7: Effect of different incubation periods on growth 

and phytase production by the selected strain of 

Actinomycetes R10 

 

 
 
Fig. 8: Growth and phytase production of the selected 

strain of Actinomycetes isolate R10using different 

waste products (10 g/L) as carbon source 
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fold increase). The previous results were in agreement with 

those obtained by many authors (Chassy, 1987; Kanatani 

et al., 1990; Ward et al., 1993) who used protoplast 

fusion in genetic manipulation and bacterial improvement. 

After protoplast fusion between Streptomyces cyaneus and 

Streptomyces griseoruber, Teeradakorn et al. (1998) 

isolated new fusants with rearrangement in their genetic 

materials and produced high levels of xylanase. Lin et al. 

(2007) isolated several fusants with increased lipase activity 

(317%). Through protoplast fusion, fibrinolytic enzyme 

production from Bacillus was improved 4-5 time compared 

to wild type (Liang and Guo, 2007). Moreover, Aly et al. 

(2011a, 2012) used the previous technique to enhance 

chitinase and lipase production by Streptomyces and mutate 

Bacillus to enhance chitinase production. 
 

Conclusion 
 

Decaying wood contained many actinomycete isolates with 

excellent phytase production and S. luteogriseus R10 was 

the most active isolate which can degrade some plant waste 

products including hay, straw and bran using phytase. 

Optimization of bacterial growth conditions enhanced 

phytase production which can be used in bioremediation 

and many industrial applications. The purified phytase 

enzyme has 65 kDa and was stable at 45°C and pH5. 

Genetic improvement using protoplast fusion enhanced 

phytase production. 
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