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ABSTRACT 
 

Plant disease incidence usually has a progress from light infection to severe prevalence. How to dynamically monitor this 

progress on a tempo-spatial scale has become a pressing issue for farmers and agricultural decision-making. In comparison 

with traditional field-point based detection and diagnosis, remote sensing techniques have provided cost effective tools for 

acquiring disease severities and corresponding spatial distribution. The primary objective of this study was to quickly identify 

and map stripe rust infections in winter wheat using multi-temporal airborne hyperspectral images from a Pushbroom 

Hyperspectral Imager (PIH) sensor developed by Chinese Academy of Sciences. Three PHI images were acquired from April 

to May in 2002 during the growing season of winter wheat. After comparatively analyzing the image and spectral properties 

between normal and diseased points in the PHI images, forty-five field sampling points were used to build a binary linear 

regression model, with a correlation coefficient (r) of 0.923 and the standard error of 0.108. Additional twenty points were 

utilized to validate the model and the coefficient of determination (R
2
) reached 0.877, which showed that this model was 

encouraging. When applied the model to the three PHI images, winter wheat fields with different stripe rust infections were 

identified and mapped with five relative severity levels: normal, light, moderate, serious and very serious. The detection results 

indicated that stripe rust incidence was progressively severe from jointing to milky stage and it was more severe in the 

southern part than in the northern part, which were very coincident with the real field survey. © 2012 Friends Science 

Publishers 
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INTRODUCTION 
 

Wheat (Triticum aestivum L.), as one of major 

consumable food products, is the second leading cereal crop 

in China. Its yield and quality is significantly associated 

with food security to a great degree. However, climate 

fluctuations have created a suitable environment for the 

incidence of various kinds of pests and diseases (Coakley, 

1978; Ahmed et al., 2012). Stripe rust (Biotroph Puccinia 

striiformis), caused by P. striiformis f. sp. Tritici, is one of 

the most devastating foliar diseases and has caused great 

yield losses in China’s wheat production. Consequently, it is 

of significance to monitor the infection scope and severity 

caused by such a disease at a large scale. Nevertheless, 

conventional disease assessment methods strongly rely on 

visual observation of optical changes in wheat canopies, 

which are usually labor-intensive, time-consuming and 

inaccurate (Parker et al., 1995). The developments of 

remote sensing technology have facilitated the direct 

detection of foliar diseases under field conditions (West et 

al., 2003). When infected with stripe rust, wheat leaf lesions 

(pustules) in yellow color are produced and they tend to be 

grouped in patches. Due to the influence of fungal disease, 

they show different leaf colors, morphologies and crop 

densities for diseased wheat canopies in comparison with 

healthy canopies, which makes it feasible to monitor stripe 

rust via remote sensing techniques. 

During the past dozens of years, there has been much 

literature produced on detecting crop diseases using 

different remote sensing data sources and processing 

techniques. Bravo et al. (2003) recognized stripe rust using 

in-field spectral images taken with a spectrograph mounted 

in the field in early spring. Moshou et al. (2004) performed 

automatic detection of ‘yellow rust’ in wheat using 

reflectance measurements and neural networks. Qin and 

Zhang (2005) utilized broadband high spatial-resolution 

airborne data acquisition and registration (ADAR) remote 

sensing data to detect rice sheath blight by constructing 

band ratio indices and standard difference indices. Huang et 

al. (2007) detected wheat yellow rust using in situ spectral 
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reflectance measurements and airborne hyperspectral 

images. Franke and Menz (2007) executed a spatio-

temporal analysis of the infection dynamics (of powdery 

mildew (Blumeria graminis) and leaf rust (P. recondita) 

using three high-resolution remote sensing images, and a 

decision tree was constructed to classify the levels of 

disease severity using mixture tuned matched filtering 

(MTMF) results and the Normalized Difference Vegetation 

Index (NDVI). Pu et al. (2008) used a Compact Airborne 

Spectrographic Imager-2 (CASI) dataset to detect mortality 

and vegetation stress associated with a new forest disease. 

Zhang et al. (2011) monitored the incidence and severity of 

yellow rust by constructing a spectral knowledge base 

(SKB) of diseased winter wheat plants, which took the 

airborne images as a medium and linked the disease severity 

with band reflectance from environment and disaster 

reduction small satellite images (HJ-CCD) accordingly. 

The corresponding studies described above clearly 

demonstrate the capability and potential of spectral 

reflectance measurements in quantifying the severities of 

plant diseases. Three types of remotely sensed data can be 

generally categorized in identifying and assessing the crop 

diseases: ground-based, airborne and spaceborne data. 

However, in general, in-field hyperspectral measurements 

are usually conducted to monitor crop diseases using 

portable field spectrometers (Huang & Apan, 2006; Rumpf 

et al., 2010; Chen et al., 2012). It is sometimes insufficient 

and inaccurate to represent the incidences of crop diseases 

of the whole target filed using only some sample points. 

Conversely, spaceborne remote sensing imagery can acquire 

high spatial resolution and wide swath images and has the 

capability to detect the disease, but coarse spectral 

resolution decreases the finer identification accuracy of 

diseased plants (Toler et al., 1981; Nutter, 1989; Reynolds et 

al., 2012). In comparison with in-field hyperspectral and 

spaceborne remote sensing data, airborne hyperspectral 

images can be taken from low-altitude flights, which usually 

have high spectral and spatial resolutions simultaneously 

(Zhang et al., 2003). In addition, they can be easily obtained 

according to the practical requirements and are very useful 

in detecting disease stress for large-scale farming of 

agricultural crops. Consequently, we shifted the attention to 

home-made airborne hyperspectral imagery (Pushbroom 

Hyperspectral Imager, PHI) in China and investigated its 

performance in monitoring stripe rust infections in winter 

wheat. 

The primary objective of this study was to 

dynamically monitor the stripe rust incidences on a tempo-

spatial scale using multi-temporal airborne PHI images. To 

extend disease monitoring from dozens of discrete field 

sampling points to a continuous area, field survey points 

with different stripe rust infections were firstly used to 

construct a regression model. Then, the model was applied 

to PHI images after testing its significance. After identifying 

the diseased regions, the wheat fields were mapped 

according to the relative severity levels. The disease 

incidence and prevalence could be dynamically recorded by 

analyzing multi-temporal stripe rust infection maps. 

 

MATERIALS AND METHODS 
 

Introduction to experimental site and design: Our 

experiment was conducted at the National Experimental 

Station for Precision Agriculture in Xiaotangshan, 

Changping District, Beijing (116°26.3′ E, 40°10.6′ N), 

China. This study site has a typical continental, semi-humid, 

monsoon climate in the temperate zone, with a mean annual 

temperate of 13
°
C and a mean annual rainfall of 507.7 mm. 

At this station, the days are generally cloudless during the 

winter wheat growing season from April to June, which is a 

significant prerequisite to acquire excellent airborne 

remotely sensed images. In addition, the terrain is very flat 

with a land area of 167 ha and is an ideal venue for 

experimental designs in precision agriculture and airborne 

hyperspectral remote sensing. 

To generate comparative wheat canopies with different 

infections, an artificial inoculation was performed in 2002 in 

accordance with a predefined experimental design. In our 

study, three wheat fields were planted: a contrast field in 

northwest direction, an artificially inoculated field in 

southwest direction and a large-scale field in the eastern 

direction (Fig. 2a). Additionally, to generate a clear contrast 

area, a spatial separation was arranged between the normal 

and artificially inoculated areas. The tested cultivar of 

winter wheat was 98-100 under the normal water and 

nutrient treatments, which has moderate resistance to stripe 

rust. At 5:00 pm on April 1, 2002, stripe rust was artificially 

inoculated with spore suspensions using spraying method in 

the target field. After about 20 days, artificially inoculated 

wheat plants began to show small amounts of stripe rust 

infection. 

Determination of disease severity: Disease severity was 

determined by visual inspection, which was obtained 

according to the proportion of a complete leaf covered by 

stripe rust spores. For each sample plot, 20 wheat plants 

were randomly selected in an area of 1 m
2
 and their disease 

conditions were respectively surveyed. Then, the plants 

were grouped into a particular severity level from 9 

classifications of disease incidence (x): 0, 1, 10, 20, 30, 45, 

60, 80 and 100% covered by stripe rust spores. Here, zero 

percent showed no incidence and 100% was the most 

serious incidence. Finally, there were a total of 46 field 

survey points and their disease indices (DIs) were calculated 

using the following equation (Li et al., 1989). 
 

( )
(%) 100

x f
DI

n f

×
= ×

×

∑
∑

(1) 

 

Where, n is the highest degree of disease severity 

observed (in this study, n = 8), f is the total number of leaves 

of each degree of disease severity. 
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Derivation of in situ hyperspectral measurements: When 

DIs were inspected, the in situ hyperspectral measurements 

of wheat canopies were taken simultaneously with a field-

portable ASD FieldSpec Pro FR 2500 spectrometer in the 

visible and near infrared (VNIR) and short-wave infrared 

(SWIR) ranges (350 to 2500 nm). The spectrometer with a 

25° field of view (FOV) has a spectral resolution of 3 nm 

and a sampling interval of 1.4 nm between 350-1000 nm 

and 2 and 10 nm in the range of 1000-2500 nm. For each 

sample plot, 10 replicate measurements were carried out at a 

height of 1.6 m above the ground and the average spectrum 

was used as the final reflectance. After collecting all the 

hyperspectral data, some preprocessing tasks must be 

performed such as spectral curve smoothing, removal of 

water vapor absorption bands, etc. 

Normalized difference vegetation index (NDVI) and 

photochemical reflectance index (PRI): When wheat is 

infested with stripe rust, its foliar pigments will be destroyed 

and foliar physiological activity accordingly decreases. The 

Normalized Difference Vegetation Index (NDVI), which is 

very sensitive to the change of canopy structure and 

biomass, was used to estimate changes in wheat canopies 

(Rouse et al., 1974). Additionally, the Photochemical 

Reflectance Index (PRI) was also used to monitor the 

disease. This index was defined at the leaf and canopy levels 

in the early 1990s to assess the efficiency of a plant’s use of 

absorbed photosynthetic active radiation (APAR) for 

photosynthesis (LUE) (Gamon et al., 1992). They were 

specifically calculated as follows: 
 

( ) ( )NIR Red NIR Red
NDVI - +ρ ρ ρ ρ= (2) 

531 570

531 570

PRI
ρ ρ

ρ ρ

−
=

+
 

(3) 

 

Where, ρx corresponds to the reflectance value at 

specific annotated wavelengths of PHI imagery. 

Processing of airborne pushbroom hyperspectral imager 

(PHI) imagery: PHI was developed by the Shanghai 

Institute of Technical Physics (SITP), Chinese Academy of 

Sciences (CAS). The sensor with a field of view of 

21
°
comprises a solid state, area array, silicon CCD device of 

780×244 elements, which is capable of acquiring images of 

1 m×1 m spatial resolution in the wavelength range of 400–

850 nm with a spectral resolution of less than 5 nm (Shao et 

al., 1998; Zhang et al., 2000). Three images were acquired 

in our study during the growing seasons of winter wheat in 

2002: jointing stage (April 18), filling stage (May 17) and 

milky stage (May 31). To perform subsequent analysis 

accurately, those images were pre-processed for radiometric, 

spectral and geometric calibration and then they were 

transformed to reflectance images by field calibration using 

empirical line method. After checking the image quality of 

each channel in accordance with the spectral properties of 

winter wheat, those bands, located in the wavelength range 

of 400-500 nm and 805-850 nm, were found to be 

abnormal. Therefore, they were abandoned in this study and 

the available bands were adopted in the 500-805 nm spectral 

range. 

Linear reversion model and hypothesis testing: 

Construction of the reversion model is the first step to derive 

stripe rust infections from multi-temporal PHI images. In 

comparison with healthy wheat, the stripe rust-infected 

wheat has usually higher reflectance values in the visible 

spectrum and lower values in the NIR range (Huang et al., 

2007; Luo et al., 2010). Furthermore, the differences 

between the visible red and NIR bands are also drastic in 

accordance with the construction of NDVI (Devadas et al., 

2009). Therefore, those two bands were selected as the 

independent variables and the measured DIs were used as 

the dependent variable to build the binary linear reversion 

model. To reduce random errors, the average values from 

620-718 nm and 770-805 nm were used as the red and NIR 

bands. It is necessary to test the significance of the model to 

be better applied in PHI images. F test was used here as 

follows (Bevington & Robinson, 2003; Downward et al., 

2007). When the calculated FExp at a certain significance 

level (α) is greater than that of Fα(k, n-k-1) from F 

distribution tables, it shows that the significant linear 

relationship exists between the independent and dependent 

variables. Otherwise, it will be rejected. 
 

( )

2

1

2

0 1
Exp

k
F

n k

χ

χ
=

− −
(4) 

 

Where, 2

0
χ represents the statistical 2

1
χ  of the better 

fit; FExp is denoted as the experimental value of F, which 

follows the distribution with degrees of freedom of kin the 

numerator and degrees of n-k-1 in the denominator; k is the 

number of independent variables in the linear regression 

model; n is the total number of samples. 
 

RESULTS 
 

Quantitative analysis of several spectral indicators: To 

quantitatively compare the differences between normal and 

diseased wheat canopies, six spectral parameters sensitive to 

stripe rust infections were selected (Table І). At each growth 

stage, there were little differences of blue, green and red 

bands in image textures and color tunings, but the 

differences were much larger among different stages. As a 

contrast, the differences were larger whether at the same 

stage or among three stages for the near-infrared (NIR), 

NDVI and PRI indicators. At jointing stage, there were just 

little differences among six parameters owing to early 

infection, but the differences were furthermore expanded 

than normal growth status because of the stripe rust 

infections at the subsequent growth stages. Stripe rust 

destroyed the pigments and reduced chlorophyll absorption, 

so the reflectance value of diseased point was higher than 

that of normal point in the visible spectrum (Blue, Green & 

Red). Conversely, it was smaller in the near-infrared 
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spectrum, because stripe rust fungus destroyed cell structure 

and water and reduced the efficiency of wheat’s use of 

APAR and LUE. In comparison with Blue, Green and Red, 

the values of NIR, NDVI and PRI of diseased wheat 

decreased in comparison with normal wheat. 

Image and spectral characteristics of diseased wheat: 

Two comparative points were marked on the PHI images of 

three growth stages and their spectral reflectance curves 

were also identified (Fig. 2). As shown in those temporal 

figures, three-band composites were created using near-

infrared band (783.5 nm), red band (682.4 nm) and green 

band (551.0 nm) (as red, green and blue, respectively) to 

offer best, most intuitive false-color combination. We could 

find that those land features in red color were primarily 

green vegetation including wheat canopies and trees. Three 

images showed different visual effects, especially in the 

color, as wheat plants progressed through jointing to milky 

stages. As shown in Fig. 2a, they had similar color tuning by 

comparing the normal and diseased sampling points. 

However, there were still some minor differences in their 

hyperspectral reflectance curves, especially in the near-

infrared region. Due to the little influence of stripe rust 

infection, the reflectance value of diseased point was 

smaller than that of normal point in the near-infrared region. 

Conversely, the color tuning was extremely different at 

filling stage which was the most significant period to form 

yield (Fig. 2b). It still showed the red color for the normal 

canopy, while it turned black for the diseased canopy. This 

phenomenon indicated that stripe rust pathogen had badly 

affected the wheat canopies, which made them lose the 

vegetation characteristics of both image and spectrum. 

Specifically, there were a reflectance peak (centered at 570 

nm), an absorption valley (centered at 670 nm) and a high 

reflection peak in near infrared waveband for the normal 

canopy, but the green peak disappeared and the red valley 

was greatly flattened in the visible spectrum and the 

reflectance obviously decreased in the wavelength range of 

715-800 nm for the diseased canopy. At the milky stage, 

vegetative characteristics had almost lost and it turned black 

in color tuning on the whole (Fig. 2c). In addition, the 

spectral curves showed different features for both normal 

and diseased points. It still showed the spectral 

characteristics of vegetation for the normal canopy, but it 

almost showed the spectral characteristics of bare soil and 

hayfield for the diseased canopy. 

Table І: Comparison of some spectral characteristic parameters between normal and diseased points at three 

growth stages 
 

Jointing stage (4/18) Filling stage (5/17) Milky stage (5/31) Spectral parameter 

Image Normal Diseased Image Normal Diseased Image Normal Diseased 

 

 

Blue (457.2 nm) 

 

 

 

5.55 

 

 

4.97 

 

 

 

2.98 

 

 

3.64 

 

 

 

3.32 

 

 

6.53 

 

 
Green (570.0 nm) 

 

 

 
9.03 

 

 
9.88 

 

 

 
6.99 

 

 
7.83 

 

 

 
10.57 

 

 
15.22 

 

 

Red (682.4 nm) 

 

 

 

9.47 

 

 

10.84 

 

 

 

2.80 

 

 

8.45 

 

 

 

9.86 

 

 

20.61 

 

 
NIR (750.1 nm) 

 

 

 
33.37 

 

 
32.61 

 

 

 
54.20 

 

 
24.87 

 

 

 
46.54 

 

 
37.80 

 
 

NDVI 

 

 
 

0.561 

 
 

0.528 

 

 
 

0.909 

 
 

0.492 

 

 
 

0.726 

 
 

0.294 

 

 
PRI 

 

 

 
-0.088 

 

 
-0.053 

 

 

 
0.011 

 

 
-0.141 

 

 

 
-0.014 

 

 
-0.155 
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Fig. 1: Location of the experimental field in our study 
 

 
 

Fig. 2: Comparison of images and spectra of normal and diseased wheat canopies among three growth stages 
 

 
 

Fig. 3: Validation of the built binary linear regression model using field measurements 
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Development and verification of linear regression model: 

Forty-five field survey points from jointing to filling stages 

were selected to build a binary linear regression model with 

a correlation coefficient (r) of 0.923 and standard error of 

0.108 (Eq. 4). F-test with a significance level of 0.05 was 

used for testing the significance of the model. The result 

showed that the calculated F value of 121.5 was 

significantly greater than F0.05 (2, 42) of 3.23, which 

indicated that this model was very encouraging. 

Furthermore, to validate the identification effect of stripe 

rust, additional twenty points were used to estimate the 

linear regression between measured and predicted DIs (Fig. 

3). The coefficient of determination (R
2
) was 0.877, which 

showed that this model had better estimation efficiency. In 

the process of acquiring PHI images, it was also inevitable 

that various factors would affect the reflectance, especially 

for a certain sensitive band. In our study, average bands of 

red (621.0-720.1 nm) and near-infrared (768.7-805.7 nm) 

spectral regions of PHI images were used instead of a 

particular band. 
 

18.652* e 1.761* 7.364DI R d NIR= − + (4) 

Where, Red and NIR are respectively the average 

reflectance values within the wavelength ranges of 620-718 

nm and 770-805 nm. 

Mapping of stripe rust infections in three PHI images: 
The developed and tested model was applied to the three 

PHI images. Relative severity levels were specified 

according to the DIs: normal (0%-5%), light (5%-25%), 

moderate (25%-50%), serious (50%-80%) and very serious 

(80%-100%). As shown in Fig. 4, it was very obvious that 

the stripe rust infections could be dynamically monitored, 

especially for the disease severities and spatial distribution. 

At the jointing stage (4/18), wheat canopies were just 

infected with stripe rust fungus, so some canopies with light 

level could be observed. However, serious stripe rust 

infections could be found in some local regions at the filling 

stage (5/17). Conversely, more extensive infections occurred 

at the milky stage, especially in the artificially inoculated 

wheat field. Concerning the spatial distribution of stripe rust 

infections, it could be found that disease was more severe in 

the southern part than in the northern part, especially in the 

PHI image of 5/31. 
 

DISCUSSION 
 

To accurately identify the diseased wheat from normal 

wheat using hyperspectral remote sensing dataset, it is 

necessary to find their spectral differences (Muhammed, 

2005).Considering the spectral properties between normal 

and diseased canopies (Fig. 2), an interesting phenomenon 

could be found that the reflectance of diseased point was 

larger than that of normal point in the visible spectrum, 

while it was smaller in the near-infrared part, which was 

consistent with the analysis results of other studies 

(Lorenzen & Jensen, 1989; Malthus, 1993; Carter & Knapp, 

2001). For healthy leaves, they have the same optical 

properties whatever the species are as shown in Fig. 5 

(Hoffer, 1978). A green, healthy and vigorously growing 

plant leaf will generally has typical spectral features: (i) 

lower reflectance in the visible bands (400-700 nm) due to 

strong light absorption by various leaf photoactive 

pigments;(ii) higher reflectance in the NIR spectral domain 

(700-1300 nm) owing to multiple scattering at the air-cell 

interfaces in the leaf’s internal tissue; and(iii) low 

reflectance in the short-wave infrared (SWIR, 1300-2500 

nm)characterized by the light absorption by the leaf water 

near 1450, 1950 and 2500 nm (Hoffer, 1978; Huang et al., 

2007). In our study, stripe rust infections caused different 

severities at different growth stages. At the jointing stage, 

the fungus primarily infected leaves which appeared in rows 

somewhat linearly along the axis of the leaf. However, 

infections appeared on the spikes and on the stems of wheat 

at the filling and milky stages. Finally, the pathogens 

overcome the host and the fungal urediniospores ruptured 

through the surface of the leaf, stem, or spike tissues. In 

addition, as stripe rust destroyed the pigment, chlorophyll 

and foliar structure of wheat, the nutrient accumulation of 

Fig. 4: Three maps of stripe rust infected winter wheat 
 

 
 

Fig. 5: Typical spectral response properties of green 

vegetation (after Hoffer, 1978) 
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normal growth was shortened and it advanced to mature in 

advance. Consequently, the leaf area indexes (LAI) and dry 

matter contents were influenced and the spectral properties 

were affected (Fig. 2). 

In previous studies, different ground-based 

hyperspectral spectrometers, such as ASD (Analytical 

Spectral Devices, Inc.) Field Spec Pro spectroradiometers, 

have been extensively applied in identification and 

characterization of fungal diseases in wheat (Sharp et al., 

1985; Chen et al., 2012). However, those non-imaging 

devices usually collect mixed spectral data besides the target 

feature in a fixed FOV and can only take a point and image 

it as a line. For instance, the spectra of soil, shadow are 

always included, when acquiring the diseased wheat 

canopies using a spectrometer. Consequently, the 

classification accuracy will be decreased to a great degree. 

Conversely, imaging spectrometers are being developed 

with the increasing needs in large-scale precision 

agriculture. Those devices can obtain image and spectrum 

with high spatial and spectral resolution of a target feature 

simultaneously during a scan process. A pixel in the image 

can correspond to a complete hyperspectral curve in the 

specific wavelength range. With this capability it is possible 

to reconstruct the image and spectral characteristics of target 

features in a heterogeneous FOV, which is capable of 

satisfying the imaging requirements for more accurate plant 

disease diagnosis (Clevers, 1999; Jones, 2004). In addition, 

more complex algorithms will be required to process the 

images than the non-imaging line data (Moshou et al., 2005; 

Mirik et al., 2006). For example, a smoothing processing 

must be performed to acquire smoothed hyperspectal curves 

for a pixel. In our study, the adjacent-averaging method with 

the window of two points was used to smooth the curves 

due to the influence of background noises. 

Concerning the wheat diseases, most of previous 

studies mainly focus on monitoring and identifying 

infections at a specific growth stage or a local region (Bravo 

et al., 2003; Nicolas, 2004). Nevertheless, it is more 

significant to learn about the stripe rust infections on a 

tempo-spatial scale. The disease severities are generally 

different at different growth stages during the growing 

period of winter wheat (Zhang et al., 2003). To conduct site-

specific fungicide applications, the spatio-temporal 

dynamics of wheat diseases must be well known. Multi-

temporal disease detection provides an effective tool for this 

dynamic infection process by multi-temporal remote 

sensing dataset (Franke & Menz, 2007). In our study, three 

home-made PHI images in China from three key growth 

stages were acquired to monitor the stripe rust infections in 

winter wheat. Consequently, the disease severities increased 

from jointing to milky stage and from north to south. The 

phenomenon could be interpreted that the inoculation 

concentrations progressively increased from north to south 

in the inoculated field. As a result, the diseases spread at a 

high speed in the wheat plots with higher inoculation 

concentrations and the diseases were also more severe. The 

identification results mostly coincided with the field survey 

condition. However, some misclassifications were also 

caused in some places, especially in the marginal areas due 

to the influences of tree shades and bare soil. In the 

subsequent study, more accurate wheat classification will be 

required to minimize the influences of backgrounds. 

In conclusion, it is always a dynamic infection process 

for stripe rust fungus in winter wheat. Multi-temporal 

disease monitoring on a tempo-spatial scale will be 

prerequisite to implement site- and time-specific fungicide 

applications. Remote sensing technology provides an 

effective tool for dynamically detecting the disease 

incidence. To achieve such a goal, two conditions will be 

required. On one hand, available remotely sensed images at 

certain key stages will be important guarantee during the 

growing season of plant. On the other hand, in-field quasi-

synchronizing measurements during the airborne images 

acquisition are very essential for creating proper ground-

based monitoring model. When the significance of the 

model is tested, it can be only applied into the airborne 

images. Therefore, based on the in situ hyperspectral 

measurements in our study, it is feasible that multi-temporal 

airborne images in China are used to dynamically monitor 

the stripe rust incidence in winter wheat at a relatively large 

tempo-spatial scale. 
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