

Full Length Article

A New Fungus Metarhizium gaoligongense from China

Zi-Hong Chen¹, Ya-Guan Zhang², Xiao-Na Yang¹, Kai Chen¹, Qin Liu¹ and Ling Xu^{1*}

¹Institute of Biological Resources of Gaoligong Mountains, Baoshan University, Baoshan 678000, Yunnan, China ²College of Chemistry and Environmental Science, Qujing Normal University, Qujing 655011, Yunnan, China *For correspondence: 591917052@qq.com

Abstract

A new species namely *Metarhizium gaoligongense* collected from Gaoligong mountains, Yunnan Province, China, was described based on both morphology and multilocus (ITS, nrSSU, nrLSU, EF-1 α , RPB1 and RPB2) phylogeny. *M. gaoligongense* was clustered in *M. flavoviride* complex which had 6 clearly separated individuals and it developed a well-supported separate clade from other 5 allied species, being more close to *M. koreanum* and *M. minus* and closest to *M. pemphigi*. The microscopic characters of *M. gaoligongense* were also very similar to *M. pemphigi*, in accordance with phylogenic affiliation, while the culture characteristics on potato dextrose agar medium could obviously distinguish the two sister species. *M. pemphigi* colonies often developed radial constriction, showed emerald green, and diffused yellow-green pigmentation into medium. However, *M. gaoligongense* colonies were flat, green, without pigment diffusion into medium, often guttulated condensation on conidia layer surface. © 2018 Friends Science Publishers

Keywords: Metarhizium; Morphology; Multilocus phylogeny; Taxonomy

Introduction

Species in the cosmopolitan genus Metarhizium Sorokin are entomopathogens (Roberts and Leger, 2004) active in regulating insect populations in nature (Lacey et al., 2001). With the rapid advance of genome technologies, multiple species of Metarhizium have been model systems to answer the basic questions in parasitology, entomology and speciation (Wang et al., 2016). Three species namely M. anisopliae, M. flavoviride and M. album were recognized based on morphological characteristics in the early classification (Rombach et al., 1987). More and more new species and varieties of Metarhizium were discovered in the following decades and morphological characteristics showed to be of limited utility for defining similar species (Sung et al., 2007; Kepler et al., 2014). Multigene (EF-1a, RPB1, RPB2 and \beta-tubulin) phylogenetic analyses had revealed that some recognized Metarhizium species were complex lineages consisting of multiple cryptic lineages with similar morphology (Bischoff et al., 2006, 2009). Based on the same four-gene analysis, Kepler et al. (2014) newly revised Metarhizium as including the major species formerly in Metacordyceps, green-spored species in Nomuraea and Chamaeleomyces, and a few species formerly in Paecilomyces.

The species resource of *Metarhizium* was diverse in China and recently abundant new species were reported, such as *M. brittlebankisoides* (Liu *et al.*, 2001; Kepler *et al.*, 2014), *M. campsosterni* (Zhang *et al.*, 2004; Kepler *et* *al.*, 2014), *M. guniujiangensis* (Li *et al.*, 2010; Kepler *et al.*, 2014). Gaoligong mountains are located in the southwestern of China and had complex ecological environment and very high biodiversity (Kavanaugh *et al.*, 2014). However, few reports were about the entomopathogens fungi in the famous mountains. Here a new *Metarhizium* species from Gaoligong mountains in China was morphologically described and phylogenetically analyzed.

Materials and Methods

Fungal Isolation and Morphological Evaluation

Soil specimens were collected from a coffee farm in the dryhot valley of Gaoligong mountains in China. Metarhizium strains were isolated from soil with a method of insect baiting according to Keyser et al. (2015). Soil sample was moistened to slightly damp and $6-7^{th}$ instar healthy Tenebrio molitor larvae were cultured on the soil. The infection status was checked every two days. Dead insects were removed and maintained on sterile moist filter paper at 25°C for about 10 days to produce conidia. Metarhizium colonies were subcultured on PDA. Pure (axenic) cultures were incubated at 25°C for 2 weeks and were identified morphologically and evaluated microscopically under a motic BA410 microscope. The new species were morphologically compared with its mostly related species, M. pemphigi. M. pemphigi isolate BUM 39.4 was also isolated from Gaoligong mountains.

DNA Extraction, PCR and Sequencing

DNA was extracted from mycelia and conidia cultured on PDA medium for 20 d with the Plant Genomic DNA Purification Kit (Qiagen). The partial sequences of 6 genes including 5.8S-ITS, nrSSU, nrLSU, EF-1a, RPB1 and RPB2were amplified. Their primer pairs were referred to Chen et al. (2013). PCR reactions were conducted in 20 µL mixture composed of 10 µL 2×EasyTaq PCR Supermix (TransGen Biotech, Beijing, China), 1 µL of each primer (10 μ M), 1 μ L of template DNA (1–2 ng) and 7 μ L sterile water. PCR programs of ITS-5.8S, nrSSU and nrLSU were referred to Chen et al. (2013), and EF-1a, RPB1 and RPB2 were according to Bischoff et al. (2006). DNA purification was performed with Gel Purification Kit (Bioteke, Beijing, China) and the genes cloning were carried out with TaKaRa PMDTM18-T vector system (TaKaRa Bio, Dalian, China). DNA sequencing was performed at SinoGenoMax Co., Ltd. and the acquired sequences were submitted to the database of GenBank.

Phylogenetic Analysis

DNA sequences of 6-locus were retrieved from GenBank, incluing 33 taxa (*M. gaoligongense*, 30 *Metarhizium* species used by Kepler *et al.* (2014), *Metacordyceps shibinensis* used by Wen *et al.* (2015) and *Beauveria bassiana* as outgroup). Theirtaxonomies and GenBank accession numbers were shown in Table 1.

The 6-locus sequences were individually aligned using Clustal X2.0 (Larkin *et al.*, 2007). Ambiguous regions in two terminals were removed in the subsequent phylogenetic analyses and gaps were treated as missing data. Phylogenic consensus tree was analyzed using MEGA6 program (Tamura *et al.*, 2013). Maximum Likelihood (ML) estimation was carried out with 1000 bootstrap replicates. Clades supported with ML values \geq 70% were regarded as significantly supported by the data.

Results

Taxonomy

Metarhizium gaoligongense Z.H. Chen & L. Xu, spp. Nov. MycoBank no.: MB 818981.

Colonies on PDA medium being white at first, then green at maturity, often prominently guttulate, and reaching 40 mm in diameter for 14 days of cultivation at 25°C. Hyphae beinghyaline, septate, branched, smooth-walled, 2.1–3.3 ($\overline{X} = 2.8 \pm 0.3$) µm wide. Conidiophores solitary or branched, 1-6 phialides for each. Phialides cylindrical, 5.6–18.4×1.6–3.4 ($\overline{X} = 11.3 \pm 3.2\times2.5\pm0.4$) µm. Conidia forming columns in culture and hyaline (green en masse), aseptate, smooth, cylindrical, 5.4–7.7×1.9–2.8 ($\overline{X} = 6.7 \pm 0.9\times2.3 \pm 0.3$) µm.

Holotype:- China. Yunnan Province: Gaoligong

mountains, altitude 1120 m, 12 May 2015, Zi-Hong Chen (CCTCC M 2016588).

Sexual state:- Unknown.

Host:- Unknown.

Type locality:- Soil of a coffee farmland in the dry-hot valley of Gaoligong mountains, Yunnan Province, China.

Etymology:- *gaoligongense*, referring to the location where the type material was collected.

Deposition:- China Center for type Culture Collection, deposition No.: CCTCC M 2016588.

Phylogenetic Analyses

Concatenated alignments of the combined 6-locus of *Metarhizium* contained 5 045 base pairs, therein 713 from 5.8S-ITS, 848 bp from nrLSU, 1 022 bp from nrSSU, 917 bp from EF-1 α , 713 bp from RPB1, and 832 bp from RPB2.

Phylogenetic tree was built based on the combined data set of 6 loci for *M. gaoligongense* and other 31 *Metarhizium* species, and *B. bassiana* as an outgroup (Fig. 1). It showed 10 clearly separated species in the *M. anisopliae* complex, and 6 clearly separated species in the *M. flavoviride* complex. The new species, *M. gaoligongense* was clustered in *M. flavoviride* complex and formed a well-supported separate clade from other 5 allied individuals, being more close to *M. koreanum* and *M. minus*, and most closely related to*M. Pemphigi* (Fig. 1). *M. pemphigi* isolate, BUM 39.4 from Gaoligong mountains, was clustered together with other two known isolates of *M. pemphigi*, confirmed its classification status.

Morphological Comparison of *M. gaoligongense* with Related Species

M. gaoligongense was groupedin *M. flavoviride* complex and had closest evolution relationship with *M. pemphigi* by phylogenetic analyses. Morphological comparison of *M. gaoligongense* with its related species in *M. flavoviride* also agreed with the affinity (Table 2). Conidia of *M. gaoligongense* ($\overline{X} = 2.3 \pm 0.3 \mu$ m wide for CCTCC M 2016588) and *M. pemphigi* ($\overline{X} = 2.4 \pm 0.43 \mu$ m wide for DAR74295 and $\overline{X} = 2.2 \pm 0.3 \mu$ m wide for BUM 39.4) were much narrower than other known species of *M. flavoviride* complex. The phialides of *M. gaoligongense* were $\overline{X} = 11.3 \pm 3.2 \times 2.5 \pm 0.4 \mu$ m, also more being closely resembled that of *M. pemphigi* ($\overline{X} = 10.1 \pm 3.1 \times 2.4 \pm 0.4 \mu$ m for BUM 39.4).

Morphological comparison was further conducted between the two sister species, *M. gaoligongense* and *M. pemphigi*. Their microscopic characters were very similar, except that conidia of *M. gaoligongense* (\overline{X} =6.7±0.9 µm long for CCTCC M 2016588) were a little longer than *M. pemphigi* (\overline{X} =6.2±1.2 µm long for BUM 39.4). However, their culture character had significant difference. *M. gaoligongense* colonies on PDA medium had flat surface

Table 1: Voucher information for the six loci used in this stud	dy
---	----

Species	Strain code			GenBank A	ccession Number	ſ	
		nrSSU	nrLSU	EF-1α	RPB1	RPB2	5.8S-ITS
M. acridum	ARSEF 324	data missing	data missing	EU248844.1	EU248896.1	EU248924.1	HM055449.1
M. acridum	ARSEF 7486	data missing	data missing	EU248845.1	EU248897.1	EU248925.1	NR132019.1
M. album	ARSEF 2082	DQ518775.1	DQ522560.1	DQ522352.1	DQ522398.1	DQ522452.1	data missing
M. album	ARSEF 2179	data missing	data missing	KJ398807.1	KJ398618.1	data missing	HM055452.1
M. anisopliae	ARSEF 7450	data missing	data missing	EU248852.1	EU248904.1	EU248932.1	HQ331464.1
M. anisopliae	ARSEF 7487	data missing	data missing	DQ463996.2	DQ468355.1	DQ468370.1	NR132017.1
M. brasiliense	ARSEF 2948	data missing	data missing	KJ398809.1	KJ398620.1	data missing	data missing
M. brunneum	ARSEF 2107	data missing	data missing	EU248855.1	EU248907.1	EU248935.1	NR132023.1
M. brunneum	ARSEF 4179	data missing	data missing	EU248854.1	EU248906.1	EU248934.1	HQ331451.1
M. carneum	CBS 239.32	EF468843.1	EF468988.1	EF468789.1	EF468894.1	EF468938.1	NR131993.1
M. cylindrosporum	ARSEF 6926	data missing	data missing	KJ398814.1	KJ398625.1	data missing	AF368270.1
M. flavoviride	ARSEF 2133	data missing	data missing	DQ463999.1	DQ468358.1	DQ468373.1	data missing
M. flavoviride	ARSEF 2025	data missing	AF138269.1	KJ398804.1	KJ398614.1	DQ468374.1	AF138269.1
M. frigidum	ARSEF 7445	data missing	data missing	KJ398818.1	KJ398628.1	data missing	data missing
M. frigidum	ARSEF 4124	data missing	data missing	DQ464002.1	DQ468361.1	DQ468376.1	NR132012.1
M. gaoligongense	CCTCC M 2016588	KY087812	KY087816	KY087820	KY087824	KY087826	KY087808
M. gaoligongense	BUM 3.5	KY087810	KY087814	KY087818	KY087822	data missing	KY087806
M. gaoligongense	BUM 1.4	KY087811	KY087815	KY087819	KY087823	data missing	KY087807
M. globosum	ARSEF 2596	data missing	data missing	EU248846.1	EU248898.1	EU248926.1	NR132020.1
M. granulomatis	UAMH 11176	HM635078.1	data missing	KJ398782.1	KJ398593.1	data missing	HM195306.1
M. granulomatis	UAMH 11028	HM195304.1	HM635076.1	KJ398781.1	data missing	data missing	NR132013.1
M. guizhouense	CBS 258.90	data missing	data missing	EU248862.1	EU248914.1	EU248942.1	HQ331448.1
M. guizhouense	ARSEF 6238	data missing	data missing	EU248857.1	EU248909.1	EU248937.1	HQ331447.1
M. indigoticum	TNS-F 18553	JF415968.1	JF415952.1	JF416010.1	JN049886.1	JF415992.1	JN049874.1
M. indigoticum	TNS-F 18554	JF415952.1	JF415969.1	JF416011.1	JN049887.1	JF415993.1	JN049875.1
M. khaoyaiense	BCC 12687	JF415971.1	data missing	KJ398796.1	JN049889.1	data missing	data missing
M. khaoyaiense	BCC 14290	JF415970.1	data missing	KJ398797.1	JN049888.1	data missing	JN049869.1
M. koreanum	ARSEF 2039	data missing	data missing	KJ398806.1	KJ398616.1	data missing	data missing
M. koreanum	ARSEF 2038	data missing	data missing	KJ398805.1	KJ398615.1	data missing	data missing
M. kusanagiensis	TNS-F 18494	JF415972.1	JF415954.1	JF416014.1	JN049890.1	data missing	JN049873.1
M. lepidiotae	ARSEF 7412	data missing	data missing	EU248864.1	EU248916.1	EU248944.1	HQ331455.1
M. majus	ARSEF 1946	data missing	data missing	EU248867.1	EU248919.1	EU248947.1	HM055450.1
M. majus	ARSEF 1914	data missing	data missing	KJ398801.1	KJ398610.1	data missing	HQ331445.1
M. marquandii	CBS 182.27	EF468845.1	EF468990.1	EF468793.1	EF468899.1	EF468942.1	NR131994.1
M. minus	ARSEF 1764	AF280635.1	AF280632.1	DQ464006.1	KJ398609.1	DQ468380.1	HM055453.1
M. minus	ARSEF 2037	AF339531.1	AF339580.1	DQ464007.1	DQ468366.1	DQ468381.1	AF138271.1
M. novozealandicum	ARSEF 4661	data missing	data missing	KJ398811.1	KJ398622.1	data missing	data missing
M. novozealandicum	ARSEF 4674	data missing	data missing	KJ398812.1	KJ398623.1	data missing	data missing
M. owariense	NBRC 33258	HQ165730.1	HQ165669.1	HQ165689.1	HQ1665747.1	data missing	HQ165712.1
M. pemphigi	ARSEF 7491	data missing	data missing	KJ398819.1	KJ398629.1	DQ468379.1	data missing
M. pemphigi	ARSEF 6569	data missing	data missing	KJ398813.1	KJ398624.1	DQ468378.1	data missing
M. pemphigi	BUM 39.4	KY087813	KY087817	KY087821	KY087825	KY087827	KY087809
M. pinghaense	CBS 257.90	data missing	data missing	EU248850.1	EU248902.1	EU248930.1	NR077205.1
M. pinghaense	ARSEF 4342	data missing	data missing	EU248851.1	EU248903.1	EU248931.1	HQ331454.1
M. pseudoatrovirens	TNSF 16380	JF415977.1	data missing	data missing	JN049893.1	JF415997.1	JN049870.1
M. rileyi	ARSEF 1972	data missing	data missing	KJ398803.1	KJ398613.1	data missing	data missing
M. rileyi	CBS 806.71	data missing	AY526491.2	EF468787.1	EF468893.1	EF468937.1	NR119513.1
M. robertsii	ARSEF 727	data missing	data missing	DQ463994.1	DQ468353.1	DQ468368.1	HQ331453.1
M. viride	ARSEF 2456	data missing	data missing	KJ398808.1	KJ398619.1	data missing	EU553291.1
M. viride	CBS 659.71	HQ165735.1	HQ165673.1	HQ165692.1	data missing	HQ165652.1	HQ165714.1
M. viridulum	ARSEF 6927	data missing	data missing	KJ398815.1	KJ398626.1	data missing	data missing
M. yongmunense	EFCC 2135	data missing	EF468979	EF468834	EF468769	EF468877	data missing
M. yongmunense	EFCC 2131	EF468833.1	EF468977.1	EF468770.1	EF468876.1	data missing	JN049856.1
M. shibinensis	GZUHSB 13050311	KR153588.1	data missing	KR153589.1	KR153590.1	data missing	KR153585.1
B. bassiana	ARSEF 7518	HQ880975.1	HQ880975.1	HQ880975.1	HQ880834.1	HQ880834.1	HQ880762.1

Metarhizium was abbreviated to M; Beauveria was abbreviated to B

and often prominently guttulate on the surface of conidia layer (Fig. 2A and B), while *M. pemphigi* colonies formed radial constriction in central region (Fig. 2C and D). The conidia cultures were green for *M. gaoligongense* and emerald green for *M. pemphigi* (Fig. 2B and C).

M. pemphigi could diffuse yellow-green pigmentation into PDA medium, while *M. gaoligongense* hardly produced pigment diffusion (Fig. 2C and D).

Discussion

Most species in *Metarhizium* are biological insecticides and have significant ecological and economic values (Kepler *et al.*, 2014). New species of *Metarhizium* were continuously revealed and enriched the biocontrol fungal resource (Wen *et al.*, 2015). Herein a new species of *Metarhizium*, *M. gaoligongense*, was proposed and described from morphological characters and phylogenetic analysis. Six

Species	Strain	Habitat	Host	Phialides (µm)	Conidia (µm)	Reference
M. minus	ARSEF 2037	Philippines	Soil		4.5-7.0×2.0-3.0	Rombach et al., 1986
M. pemphigi	DAR 74295	Britain	Pemphigus treherni		$5.4 \pm 0.47 {\times} 2.4 \pm 0.43$	Driver et al., 2000
M. pemphigi	BUM39.4	China	Soil	6.9-16.3×2.1-2.9	4.6-8.6×1.9-2.7	This study
				$(10.1 \pm 3.1 \times 2.4 \pm 0.4)$	$(6.2 \pm 1.2 \times 2.2 \pm 0.3)$	
M. gaoligongense	CCTCC M 2016588	China	Soil	5.6-18.4×1.6-3.4	5.4-7.7×1.9-2.8	This study
				$(11.3 \pm 3.2 \times 2.5 \pm 0.4)$	$(6.7 \pm 0.9 \times 2.3 \pm 0.3)$	
M. frigidum	ARSEF 4124	Australia	Coleoptera		4.5-7.5×2.5-3.5	Bischoff et al., 2006
	ARSEF 4561	Australia	Soil	6.5-12.5×2.5-4.0	4.5–7.5 (–9)×3.0–4.0	Bischoff et al., 2006
M. koreanum	ARSEF 2039	Korean	Planthoppers	9.0-17.5×3.0-5.0	6.0-9.0×3.0-4.0	Kepler et al., 2014
M. flavoviride	ARSEF 2025	Germany	Agricultural Soil	11.5-17.0×2.5-4.5	8.0-11.0×3.5-4.5	Bischoff et al., 2006

Tε	ıbl	le 2	2:	М	lorn	bho	log	ical	c	haracters	com	parison	among	2 M	letari	hiz	ium	ı fl	ανοι	virid	le	comr	olex
		~ ~			ιorp	110	105	1 Cu		indiactory	com	parison	amony			~~~	,	~ / ~		11 100	~	comp	1011

Metarhizium was abbreviated to M.

Fig. 1: Phylogenetic tree of *Metarhizium* based on ML analysis of 6-locus (5.8S-ITS, nrSSU, nrLSU, EF-1α, RPB1 and RPB2) dataset

*Denotes an ex-type isolate

widely used genes (5.8S-ITS, nrSSU, nrLSU, EF-1 α , RPB1 and RPB2) in fungal phylogenetic analysis (Kepler *et al.*, 2012; Sanjuan *et al.*, 2014; Wen *et al.*, 2015) were selected. The dataset of 30 species in *Metarhizium* used by Kepler *et al.* (2014) were included in this study and their phylogenetic affiliation was well congruent, suggesting that our result could depict similar interspecific genetic relationships and the position of *M. gaoligongense* in the tree from 6locusdata was reasonable and reliable. *M. gaoligongense* was clearly separated from its allied species and well supported as an independent clade, being differed from its closest species, *M. pemphigi*, with credible bootstrap support (99%) (Fig. 1). Morphology also supported the recognition of *M. gaoligongense* as a distinct species. *M.* gaoligongense was quite similar to *M. pemphigi* on thinner conidia and phialide, but its conidia were longer and its culture characteristics on PDA medium had considerable distinction with *M. pemphigi*, including flat colony surface, guttulate on the surface of conidia layer and its conidia being green without pigment diffusion.

The type material for *M. gaoligongense* was isolated from the dry-hot valley of Gaoligong mountains, Yunnan Province, China. The habitat was the soil of a coffee farmland with high temperature (31–35°C), low humidity (30%–34%). The vast zone of dry-hot valley of Gaoligong mountains might hold a treasure of undiscovered and unclassified species of entomopathogenic fungi and should be further investigated. The host and telomorphic stage of

Fig. 2: Morphology of *Metarhizium gaoligongense* and *M. pemphigi*

A, **B**: colony of *Metarhizium gaoligongense*; **C**, **D**: colony of *M. pemphigi*; **E**: phialides and conidia of *M. pemphigi*; **F**: conidial chain of *M. pemphigi*; **G**: sprouting conidia of *M. gaoligongense*; **H**: phialide with budding conidium of *M. gaoligongense*; **I**: phialide with conidial chain of *M. gaoligongense*; **J**: conidial chain of *M. gaoligongense*; **J**: phialide with c

M. gaoligongense Z.H. Chen & L. Xu, spp. Nov, MycoBank no.: MB 818981

M. gaoligongense were unknown so far. Additional specimens of this new species were expected to determine the precise anamorph-teleomorph connection.

Conclusion

M. gaoligongense (CCTCC M 2016588) from Gaoligong mountains was confirmed to be a *Metarhizium* species according to morphology and mutilocus molecular evidence (5.8S-ITS, nrSSU, nrLSU, EF-1 α , RPB1 and RPB2). Both morphology and phylogenic affiliations of this species was closet to *M. pemphigi*, while the database of its muti-gene sequences formed a dominant independent clade and its colony on PDA medium was obviously distinct from *M. pemphigi*.

Acknowledgments

We acknowledge the financial supports of the National Natural Science Area Fund Projects of China (31460153), Key Project of Universities Joint Foundation in Yunnan Province (2017FH001-126), and Surface Project of Universities Joint Foundation in Yunnan Province (2017FH001-029).

References

- Bischoff, J.F., S.A. Rehner and R.A. Humber, 2009. A multilocus phylogeny of the *Metarhizium anisopliae* lineage. *Mycologia*, 101: 512–530
- Bischoff, J.F., S.A. Rehner and R.A. Humber, 2006. *Metarhizium frigidum* spp. nov.: a cryptic species of *M. anisopliae* and a member of the *M. flavoviride* complex. *Mycologia*, 98: 737–745

- Chen, Z.H., Y.D. Dai, H. Yu, K. Yang, Z.L. Yang, F. Yuan and W.B. Zeng, 2013. Systematic analyses of *Ophiocordyceps lanpingensis* spp. nov., a new species of *Ophiocordyceps* in China. *Microbiol. Res.*, 168: 525–532
- Driver, F., R.J. Milner and W.H. Wrueman, 2000. A taxonomic revision *Metarhizium* of based on a phylogenetic analysis of rDNA sequence data. *Mycol. Res.*, 104: 134–150
- Kavanaugh, D.H., F. Hieke, H. Liang and D. Dong, 2014. Inventory of the carabid beetle fauna of the Gaoligong Mountains, western Yunnan Province, China: species of the tribe Zabrini (Coleoptera, Carabidae). Zookeys, 407: 55–119
- Kepler, R.M., R.A. Humber, J.F. Bischoff and S.A. Rehner, 2014. Clarification of generic and species boundaries for *Metarhizium* and related fungi through multigene phylogenetics. *Mycologia*, 106: 811–829
- Kepler, R.M., G.H. Sung, S. Ban, A. Nakagiri, M.J. Chen, B. Huang, Z.Z. Li and J.W. Spatafora, 2012. New teleomorph combinations in the entomopathogenic genus *Metacordyceps. Mycologia*, 104: 182–197
- Keyser, C.A., H.H.D.F. Licht, B.M. Steinwender and N.V. Meyling, 2015. Diversity within the entomopathogenic fungal species *Metarhizium flavoviride* associated with agricultural crops in Denmark. *BMC Microbiol.*, 15: 249
- Lacey, L., R. Frutos, H. Kaya and P. Vail, 2001. Insect pathogens as biological control agents: Do they have a future? *Biol. Contr.*, 21: 230–248
- Larkin, M.A., G. Blackshields, N.P. Brown, R. Chenna, P.A. McGettigan, H. McWilliam, F. Valentin, I.M. Wallace, A. Wilm, R. Lopez, J.D. Thompson, T.J. Gibson and D.G. Higgins, 2007. Clustal W and clustal X version 2.0. *Bioinformatics*, 23: 2947–2948
- Li, C., B. Huang, M. Fan, Y. Lin and Z. Li, 2010. *Metacordyceps guniujiangensis* and its *Metarhizium* anamorph: a new pathogen on cicada nymphs. *Mycotaxon*, 111: 221–231
- Liu, Z.Y., Z.Q. Liang, A.J.S. Whalley, Y.J. Yao and A.Y. Liu, 2001. Cordyceps brittlebankisoides, a New Pathogen of Grubs and Its Anamorph, Metarhizium anisopliae var. majus. J. Invertebr. Pathol., 78: 178–182
- Roberts, D.W. and R.J.S. Leger, 2004. *Metarhizium* spp., cosmopolitan insect-pathogenic fungi: mycological aspects. *Adv. Appl. Microbiol.*, 54: 1–70

- Rombach, M.C., R.A. Humber and H.C. Evans, 1987. *Metarhizium album*, a fungal pathogen of leaf- and plant hoppers of rice. *Trans. Brit. Mycol. Soc.*, 88: 451–459
- Rombach, M.C., R.A. Humber and D.W. Roberts, 1986. *Metarhizium flavoviride* var. *minus* var. nov. a pathogen of plant- and leafhoppers on rice in the philippines and solomon islands. *Mycotaxon*, 27: 87–92
- Sanjuan, T., J. Tabima, S. Restrepo, T. Læssøe, J.W. Spatafora and A.E. Franco-Molano, 2014. Entomopathogens of Amazonian stick insects and locusts are members of the *Beauveria* species complex (Cordyceps sensu stricto). *Mycologia*, 106: 260–275
- Sung, G.H., N.L. Hywel-Jones, J.M. Sung, J.J. Luangsa-ard, B. Shrestha and J.W. Spatafora, 2007. Phylogenetic classification of *Cordyceps* and the clavicipitaceous fungi. *Stud. Mycol.*, 57: 5–59
- Tamura, K., G. Stecher, D. Peterson, A. Filipski, M. Nei and S. Kumar, 2013. MEGA6: molecular evolutionary genetics analysis version 6.0. *Mol. Biol. Evol.*, 30: 2725–2729
- Wang, J.B., R.J.S. Leger and C. Wang, 2016. Advances in Genomics of Entomopathogenic Fungi. Adv. Genet., 94: 1–39
- Wen, T.C., L.S. Zha, Y.P. Xiao, Q. Wang, J.C. Kang and K.D. Hyde, 2015. *Metacordyceps shibinensis* sp. nov. from larvae of Lepidoptera in Guizhou Province, southwest China. *Phytotaxa*, 226: 51–62
- Zhang, W.M., T.H. Li, Y.Q. Chen and L.H. Qu, 2004. Cordyceps campsosterna, a new pathogen of Campsosternus auratus. Fung. Divers., 17: 239–242

(Received 18 May 2018; Accepted 23 May 2018)