Morphological and Genetic Diversity of Cereal Genotypes in Kingdom of Saudi Arabia

Salem S. Alghamdi1, Sulaiman A. Alffi1, Hussein M. Migdadi1, Saud L. Al-Rowaily4, Ehab H. El-Harty1 and Muhammad Farooq1,2,3,*

1Legume Research Group, Plant production Department, College of Food and Agricultural Sciences, King Saud University, Riyadh 11451, Saudi Arabia
2Department of Agronomy, University of Agriculture, Faisalabad-38040, Pakistan
3The UWA Institute of Agriculture, The University of Western Australia, 35 Stirling Highway, Crawley WA 6009, Australia
4For corresponding: farooqcp@gmail.com

Abstract

Cereals are rich in carbohydrates and offer a major source of daily calorie intake. Among cereals, wheat (Triticum aestivum L.), barley (Hordeum vulgare L.), maize (Zea mays L.) and sorghum (Sorghum bicolor L.) are the leading crops grown across the globe. The utilization of exotic and diverse germplasm of a crop is a useful tool to increase the genetic diversity among the genotypes. In this study, we collected 11 wheat, 4 barley, 15 sorghum and 6 maize genotypes from farmer’s fields of Saudi Arabia and evaluated, for their morphological and genetic diversity potential. Significant differences were observed in the morphological characters of tested wheat, barley, sorghum and maize genotypes under field conditions. Sequence-related amplified polymorphism showed substantial genetic diversity in the tested genotypes of all the cereal crops. All the genotypes of wheat and barley significantly differed for the plant height, productive tillers, 1000 grain weight, and days to 50% flowering and maturity. Similarly, sorghum and maize genotypes differed significantly for the leaf area and plant height. All genotypes of wheat, barley, sorghum and maize differed for the number of alleles; maximum alleles were 156 in wheat, 172 in barley, 127 in sorghum and 73 in maize, per primer combination. Polymorphism of all of tested genotypes of wheat, barley, sorghum and maize was 100% in all the tested genotypes. Existence of genetic diversity of these tested wheat, barley, sorghum and maize genotypes offers opportunities to exploit favourable alleles for use in the breeding program aimed at yield improvement. © 2017 Friends Science Publishers

Keywords: Cereals; Crop improvement; Genetic diversity; Sequence-related amplified polymorphism

Introduction

Cereal crops such as wheat (Triticum aestivum L.), barley (Hordeum vulgare L.), sorghum (Sorghum bicolor L.) and maize (Zea mays L.) are consumed for food and feed in many parts of the world. The importance of these crops in the food security is vital, as they play a significant role in poverty alleviation, environmental protection and sustainable development, by acting as a source of daily calories intake for both the human and animals (Ureta et al., 2012).

In commercial crop production systems and natural ecosystems, the genetic variation and diversity in crop plants is being lost continuously (Adnan, 2011; Gergana, 2014). In this context, the gene banks are an important source of alleles and reservoir of the biodiversity that can be easily utilized for the genetic improvement of the target plants (Pecetti et al., 2001). Research endeavors are underway to collect the threatened landraces and the genotypes that have obsolete genetic stocks, as the crop improvement through breeding approaches rely largely on the extent of genetic variation in the respective crop gene pools (Ibrahim et al., 2011). Utilization of the genetic resources and their efficient conservation need ample knowledge regarding the amount of genetic variation in germplasm arrays and genetic relationships between genotypes (Lekgari and Dweikat, 2014).

The morphological characterization and evaluation of the diversity of the wheat genetic resources is often useful to improve the wheat breeding for its adaptation to optimal and suboptimal environments (Pecetti et al., 2001; Zaharieva et al., 2010). In a big group of wheat genotypes, originating from several countries, the wheat was divided according to the origins through simple sequence repeat (SSR) markers-assisted analysis. However, the combined effects of genotypic adaptability to diverse set of conditions and the breeding methods led to the diversity within each geographical group (Balfourier et al., 2007). Polymorphism in some morphological traits indicated a wide range of variability...
in the Turkish durum wheat landraces (Zencirci and Karago, 2005).

Analysis of 224 barley genotypes indicated significant genotypic variation for grain weight, plant height and flowering time (Haseneyer et al., 2010). Seed quality and the quantitative trait analysis of 3191 genotypes of the barley landraces of Oman also showed considerable phenotypic diversity for spike glaucousness (0.50–0.15) and spikelets per spike (0.85) (Jaradat et al., 2004). Rajeev et al. (2007) described that EST-derived single nucleotide polymorphism (SNP) was the best class of markers for characterizing and conserving the gene bank materials, and the amplified fragments length polymorphism (AFLP) and SSR markers were more suitable for diversity analysis and fingerprinting in barley.

Drought tolerance is one of the most important traits in sorghum, enabling the growth of sorghum in harsh environments (Pammi et al., 1994) such as the subtropical desert region of Saudi Arabia. Although, there are numerous international and national collections of sorghum cultivars, however, much of the diversity of the sorghum genotypes remained uncharacterized (Kimber et al., 2013). In a study on maize germplasm, a significant difference among morphological characters was observed, thus indicating high genetic diversity (Marker and Krupakar, 2009). A high level of variation among and within 41 Mexican maize races for climatic and ecological adaptation was found (Corral et al., 2008).

Usually, the genetic diversity is estimated by measuring the differences in the morphological traits of the genotypes (Upadhaya et al., 2007). However, assessment of genetic diversity on the basis of morphological traits is mostly limited by the environmental factors due to their direct influence on the expression of the quantitative traits. In this scenario, the use of molecular markers such as sequence-related amplified polymorphism (SRAP) and AFLP, which are insensitive to environmental variables, might be used as a pragmatic tool to elucidate the inter- and intra-species variations (Kumar, 1999; Hartings et al., 2008; Khan et al., 2016).

Although, the assessment of cereal genotypes on physiological, biochemical and morphological basis has been widely reported; few reports include the information regarding genetic diversity on morphological and molecular basis in wheat, barley, sorghum and maize genotypes of the Kingdom of Saudi Arabia using SRAP. This study was, therefore, conducted to evaluate the genetic diversity among the wheat, maize, sorghum and barley genotypes of Saudi Arabia on agronomic, morphological and phenological basis using SRAP molecular marker techniques.

Materials and Methods

Germplasm Collection

Genotypes of major cereal crops wheat (11), barley (4), sorghum (15) and maize (6) were collected from different locations in the Kingdom of Saudi Arabia. The collected seeds were purified, cleaned, packed and sealed. Each sample was labelled according to the gene bank serial number starting with the initials of the King Saud University (KSU) followed by the initials of the English name of the crop, and the serial number of the genotype.

Field Performance

This study was conducted at the Dirab Experimental Station (24° 43’ 34” N, 46° 37’ 15” E) of the King Saud University, Riyadh, Kingdom of Saudi Arabia during the growing seasons of 2013–2014 and 2014–2015. Sorghum and maize were planted on July 18, 2013, and July 21, 2014 during first and second years, respectively; whereas wheat and barley were planted on October 28, 2013 and November 01, 2014 during first and second years, respectively.

The experimental soil was sandy clay loam having pH of 8.15 and ECe of 2.1 dS m⁻¹. The plot length was 5 m and the planted row length was 4 m. The experimental plot had four rows for each genotype and the rows were 0.5 m apart from each other. The distance between plants was 15 cm for wheat and barley, and 40 cm for sorghum and maize.

Fertilizers were applied at 120, 100 and 60 kg ha⁻¹, 100, 90 and 50 kg ha⁻¹, 150, 120 and 70 kg ha⁻¹, and 100, 80 and 50 kg ha⁻¹ nitrogen (as urea), phosphorus (as triple super phosphate) and potassium (as potassium sulphate) for wheat, barley, maize and sorghum, respectively.

The plots were protected using plastic net to avoid bird attack. Sorghum was harvested on September 08, 2013, and September 13, 2014 during first and second years, respectively; whereas maize was harvested on September 12, 2013 and September 18, 2014 during first and second years respectively. Wheat was harvested depending on the maturity of each genotype during both years of the study; however, barley was harvested was harvested on May 08, 2014 and May 12, 2015 during first and second years, respectively.

Data on ten plants from each replication were recorded for each of the parameters. For all cereals, the plant height was recorded with a meter rod from the base of plant to the tip of the inflorescence. For wheat and barley, the total and productive tillers were counted for each of the plant, and averaged. For recording the 1000 grain weight, 1000 seeds were counted and weighed on a digital weighing balance. Days from sowing to 50% flowering and 95% maturity were recorded as days to flowering and maturity, respectively by visual observation. Leaf area (per plants) of sorghum and maize was recorded, at heading stage, with portable leaf area meter (LI-3100C, LI-COR, Lincoln, Nebraska USA).

Molecular Characterization

For molecular analysis, DNA was extracted following as detailed by Alghamdi et al. (2012). The SRAP primer combinations were tested on randomly selected genotypes
of each crop included in the study. As consistently reproducible polymorphism was noted, the primer combinations were selected to analyse the genotypes included in the study.

Statistical Analysis

All phenotypic variables were tested for normal distribution. As the year effect was not significant, data on morphological parameters of two years were pooled. The data have been presented as mean of replications and years. The GeneMapper Analysis Software v3.7 was used for the fragment analysis. The threshold for allele calling was set at 200 relative florescence units (rfu) following Wooten and Tolley-Jordan (2009). Data generated by the SRAP analysis were analyzed by Jaccard similarity coefficient following Jaccard (1908), and the dendrograms were constructed following Alghamdi et al. (2014).

Results

Wheat

Field performance of wheat showed significant variability in plant height, total tillers, productive tillers, 1000-grain weight, days to flowering and days to maturity. Variability among plant height ranged from 50.3 cm in genotype KSU-WH1 (lowest) to 105.7 cm (highest) in genotype KSU-WH5 with an average of 69.4 cm. The maximum total tillers were observed in genotype KSU-WH11, and the minimum total tillers were recorded in genotype KSU-WH1 (Table 1). However, the maximum productive tillers were recorded in genotype KSU-WH11, and were the lowest in genotype KSU-WH1. Wheat genotypes also showed high variability in 1000-grain weight; maximum 1000 grain weight was recorded in genotype KSU-WH2 (43.2 g), and the lowest was noted in genotype KSU-WH1 (26.5 g) (Table 1). Genotype KSU-WH4 took less days (95 and 129 days), while genotype KSU-WH2 took more days (139 and 179 days) to reach 50% flowering and maturity, respectively (Table 1).

The dendrogram constructed by UPGMA cluster analysis, of the tested genotype based on the morphological data, was cut at a genetic distance of 0.22 units. This generated two main cluster groups, one cluster group consisted of the genotypes KSU-WH2, KSU-WH3, and KSU-WH10, and other cluster group consisted of the genotypes KSU-WH6, KSU-WH7, KSU-WH8, KSU-WH9 and KSU-WH11. The genotypes KSU-WH1, KSU-WH4 and KSU-WH5 failed to form any cluster, thus were individually separated (Fig. 1). However, at 50% distance (0.30), nine genotypes were grouped in one cluster and the genotypes KSU-WH1 and KSU-WH4 were individually separated (Fig. 1). Genotype KSU-WH10 surpassed all other genotypes in 1000 grain weight. This genotype could be elite genotype for improving the yield components.

Jaccard genetic similarity index among genotypes ranged from 1.0 to 0.17 (Table 2).

In wheat genotypes, a total of 593 polymorphic alleles were generated using five primer combinations, ranging from 65 to 156 alleles per primer combination, with an average of 119 alleles per primer set (Table 3). The highest number of alleles (156) was observed in the primer combination P1xP4. The size of amplification products ranged from 100 to 500 bp. All the primer combinations displayed 100% polymorphism (Table 3) which indicated high genetic diversity among all the tested wheat genotypes. All primers generated 2465 amplified fragments with an average of 493 fragments per primer combination and 244 fragments per genotype (Table 3).

Barley

In barley genotypes, a wide range of variability was observed for plant height, total number of tillers, productive tillers, 1000 grain weight, days to flowering and days to maturity. Variability among plant height ranged from a minimum of 56.20 cm in KSU-BA4 to a maximum of 80.00 cm in KSU-BA2 (Table 4). Maximum total and productive tillers were recorded with genotype KSU-BA4, and they were the minimum in genotype KSU-BA1. Maximum 1000 grain weight was recorded with genotype KSU-BA4, and the minimum was recorded in genotype KSU-BA3 (Table 4). The genotype KSU-BA4 took less time to complete 50% flowering compared with other genotypes, while the genotype KSU-BA3 took less days to reach the maturity (Table 4).

The dendrogram constructed by the UPGMA cluster analysis, of the genotypes based on the morphological data, was cut at a genetic distance of 0.54 units. This generated one main cluster group with two genotypes viz. KSU-BA1 and KSU-BA3. The genotypes KSU-BA4 and KSU-BA2 failed to form any cluster and were individually separated (Fig. 2). Genetic similarity index among the genotypes ranged from 0.1 among genotypes KSU-BA3 and KSU-BA4 to 0.36 among genotypes KSU-BA1 and KSU-BA3 (Table 5).

In barley genotypes, a total of 605 polymorphic alleles were generated using five primers combination, ranging from 78 to 172 alleles per primer combination, with an average of 121 alleles per primer set. The highest number of alleles i.e. 172 was recorded in primer combination P1xP2 (Table 3). The size of amplification region ranged from 100 to 500 bp. All the primer combinations displayed 100 % polymorphism (Table 3) with highest genetic diversity. All primers generated 1928 amplified fragments with an average of 386 fragments per primer combination and 482 fragments per genotype (Table 3).

Sorghum

In all fifteen sorghum genotypes, a wide range of variability was observed in leaf area and plant height. The genotypes
Table 1: Descriptive statistics of morphological, agronomic and phenological traits of some wheat genotypes of Saudi Arabia.

<table>
<thead>
<tr>
<th>Genotype No.</th>
<th>Origin</th>
<th>Plant height (cm)</th>
<th>Total tillers (per plant)</th>
<th>Productive tillers (per plant)</th>
<th>1000-grain weight (g)</th>
<th>Days to flowering</th>
<th>Days to maturity</th>
</tr>
</thead>
<tbody>
<tr>
<td>KSU-WH1</td>
<td>Qaseem</td>
<td>50.3</td>
<td>04.3</td>
<td>03.5</td>
<td>26.5</td>
<td>135.0</td>
<td>172.0</td>
</tr>
<tr>
<td>KSU-WH2</td>
<td>Qaseem</td>
<td>71.9</td>
<td>10.9</td>
<td>10.4</td>
<td>43.2</td>
<td>139.0</td>
<td>179.0</td>
</tr>
<tr>
<td>KSU-WH3</td>
<td>Qaseem</td>
<td>64.5</td>
<td>08.5</td>
<td>07.4</td>
<td>38.8</td>
<td>137.6</td>
<td>176.9</td>
</tr>
<tr>
<td>KSU-WH4</td>
<td>Najran</td>
<td>59.0</td>
<td>10.1</td>
<td>8.6</td>
<td>29.9</td>
<td>095.7</td>
<td>129.5</td>
</tr>
<tr>
<td>KSU-WH5</td>
<td>Najran</td>
<td>105.7</td>
<td>11.6</td>
<td>11.0</td>
<td>39.3</td>
<td>137.2</td>
<td>172.0</td>
</tr>
<tr>
<td>KSU-WH6</td>
<td>Najran</td>
<td>68.9</td>
<td>09.1</td>
<td>09.0</td>
<td>34.4</td>
<td>112.3</td>
<td>152.0</td>
</tr>
<tr>
<td>KSU-WH7</td>
<td>Old landrace (Samma)</td>
<td>61.6</td>
<td>10.2</td>
<td>09.2</td>
<td>37.8</td>
<td>113.1</td>
<td>151.6</td>
</tr>
<tr>
<td>KSU-WH8</td>
<td>Old landrace (Samma)</td>
<td>71.3</td>
<td>10.2</td>
<td>09.9</td>
<td>34.9</td>
<td>132.2</td>
<td>169.5</td>
</tr>
<tr>
<td>KSU-WH9</td>
<td>Old landrace (Luquimi)</td>
<td>70.0</td>
<td>09.0</td>
<td>08.7</td>
<td>36.1</td>
<td>123.9</td>
<td>159.1</td>
</tr>
<tr>
<td>KSU-WH10</td>
<td>Wadi-e-Dwaser</td>
<td>63.5</td>
<td>10.1</td>
<td>7.9</td>
<td>40.8</td>
<td>128.3</td>
<td>166.9</td>
</tr>
<tr>
<td>KSU-WH11</td>
<td>commercial cultivar (Yoko)</td>
<td>77.1</td>
<td>12.2</td>
<td>11.5</td>
<td>38.7</td>
<td>129.7</td>
<td>157.5</td>
</tr>
</tbody>
</table>

Mean 69.4 9.7 8.8 36.4 125.8 162.4
Max 105.7 12.2 11.5 43.2 139.0 179.0
Min 50.3 4.3 3.5 26.5 95.7 129.5
Standard error 4.2 0.6 0.7 1.5 4.1 4.4
Variance 198.0 4.4 4.7 23.4 184.4 208.3
Standard deviation 14.1 2.1 2.2 4.8 13.6 14.4
Median 68.9 10.1 9.0 37.8 129.7 166.9
Coefficient of variance 20.3 21.6 24.6 13.3 10.8 8.9

Table 2: Jaccard similarity index among wheat genotypes of Saudi Arabia generated using SRAP markers.

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Alghamdi et al. / Int. J. Agric. Biol., Vol. 19, No. 4, 2017</td>
<td></td>
</tr>
</tbody>
</table>

KSU-SO5 and KSU-SO6 had the maximum plant height of 275 cm, while the genotypes KSU-SO1 and KSU-SO1 had the shortest plants with average height of 195 cm (Table 6).

The UPGMA cluster analysis of sorghum genotypes based at morphological data was cut at the distance of 0.10 units (which represented 33% of the distance from the maximum distance of 0.28 units to the minimum of 0.01
Jaccard similarity index among barley genotypes of Saudi Arabia generated using SRAP markers

Table 6: Descriptive statistics of leaf area and plant height of some sorghum and maize genotypes of Saudi Arabia

Table 4: Descriptive statistics of morphological, agronomic and phenological traits of some barley genotypes of Saudi Arabia

Table 5: Jaccard similarity index among barley genotypes of Saudi Arabia generated using SRAP markers
primer combinations displayed 100% polymorphism. All primers generated 1779 amplified fragments with an average of 297 fragments per primer combination and 119 fragments per genotype (Table 8).

Maize

In all maize genotypes, a variety of diversity was recorded in leaf area, plant height and number of heads per plant. Highest leaf area was recorded in the genotype KSU-MA1 and minimum leaf area was recorded with genotype KSU-MA5 (Table 6). The maximum plant height was recorded in genotype KSU-MA4, and that of minimum in genotype KSU-MA2 (Table 6).

The UPGMA cluster analysis of maize genotypes based at morphological data was cut at the distance of 0.10 units, which generated two clusters. The genotypes KSU-MA2 and KSU-MA3 formed one cluster, while genotypes KSU-MA4, KSU-MA5 and KSU-MA6 formed the second cluster. The genotype KSU-MA1 failed to form any cluster and was individually separated (Fig. 4). Genetic similarity index among genotypes ranged from 0.1 between KSU-MA3 and KSU-MA4 to 0.63 between KSU-MA2 and KSU-MA3 (Table 9).

Using six SRAP primer combinations a total of 316 polymorphic alleles were generated, ranging from 18 to 73 alleles per primer combination, with an average of 53 alleles per primer set. The size of amplification products ranged from 100 to 500 bp. All the primer combinations displayed 100% polymorphism. All primers generated 673 amplified fragments with an average of 112 fragments per primer combination and 112 fragments per genotype (Table 8).

Discussion

Cereals have been the principal food and energy source for
narrowed the genetic basis of modern crop plants breeding programs improvement in crop plants mainly the cereals. Although the demand is continuously increasing owing to exponentially rising global population. This necessitates exploring the inter- and intra-

The human being. However, the demand is continuously increasing owing to exponentially rising global population. Although the plant breeding efforts are aimed at yield improvement in crop plants mainly the cereals. Nonetheless, breeding programs focused on yield enhancement have narrowed the genetic basis of modern crop plants (Fu et al., 2015). This necessitates exploring the inter- and intra-

Table 7: Jaccard similarity index among sorghum genotypes of Saudi Arabia generated using SRAP markers

<table>
<thead>
<tr>
<th>Primer pair combination</th>
<th>Sorghum</th>
<th>Maize</th>
</tr>
</thead>
<tbody>
<tr>
<td>KSU-SO1</td>
<td>1.00</td>
<td>68</td>
</tr>
<tr>
<td>KSU-SO2</td>
<td>0.45</td>
<td>1.00</td>
</tr>
<tr>
<td>KSU-SO3</td>
<td>0.46</td>
<td>0.41</td>
</tr>
<tr>
<td>KSU-SO4</td>
<td>0.27</td>
<td>0.27</td>
</tr>
<tr>
<td>KSU-SO5</td>
<td>0.25</td>
<td>0.30</td>
</tr>
<tr>
<td>KSU-SO6</td>
<td>0.18</td>
<td>0.21</td>
</tr>
<tr>
<td>KSU-SO7</td>
<td>0.32</td>
<td>0.39</td>
</tr>
<tr>
<td>KSU-SO8</td>
<td>0.25</td>
<td>0.23</td>
</tr>
<tr>
<td>KSU-SO9</td>
<td>0.29</td>
<td>0.25</td>
</tr>
<tr>
<td>KSU-SO10</td>
<td>0.24</td>
<td>0.26</td>
</tr>
<tr>
<td>KSU-SO11</td>
<td>0.27</td>
<td>0.22</td>
</tr>
<tr>
<td>KSU-SO12</td>
<td>0.34</td>
<td>0.31</td>
</tr>
<tr>
<td>KSU-SO13</td>
<td>0.37</td>
<td>0.40</td>
</tr>
<tr>
<td>KSU-SO14</td>
<td>0.37</td>
<td>0.36</td>
</tr>
<tr>
<td>KSU-SO15</td>
<td>0.38</td>
<td>0.40</td>
</tr>
</tbody>
</table>

Table 8: DNA polymorphism generated using five SRAP primer combinations in sorghum and maize genotypes of Saudi Arabia

<table>
<thead>
<tr>
<th>Primer pair combination</th>
<th>No. alleles</th>
<th>Total fragments</th>
<th>Polymorphism%</th>
</tr>
</thead>
<tbody>
<tr>
<td>P2xP6</td>
<td>127</td>
<td>392</td>
<td>100</td>
</tr>
<tr>
<td>P2xP7</td>
<td>107</td>
<td>297</td>
<td>100</td>
</tr>
<tr>
<td>P2xP8</td>
<td>76</td>
<td>167</td>
<td>100</td>
</tr>
<tr>
<td>P3xP9</td>
<td>75</td>
<td>227</td>
<td>100</td>
</tr>
<tr>
<td>P3xP10</td>
<td>108</td>
<td>395</td>
<td>100</td>
</tr>
<tr>
<td>P3xP11</td>
<td>59</td>
<td>301</td>
<td>100</td>
</tr>
</tbody>
</table>

Table 9: Jaccard similarity index among maize genotypes of Saudi Arabia generated using SRAP markers

<table>
<thead>
<tr>
<th>Primer pair combination</th>
<th>KSU-MA1</th>
<th>KSU-MA2</th>
<th>KSU-MA3</th>
<th>KSU-MA4</th>
<th>KSU-MA5</th>
<th>KSU-MA6</th>
</tr>
</thead>
<tbody>
<tr>
<td>KSU-MA1</td>
<td>1.00</td>
<td>1.00</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>KSU-MA2</td>
<td>0.49</td>
<td>0.63</td>
<td>1.00</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>KSU-MA3</td>
<td>0.50</td>
<td>0.15</td>
<td>0.10</td>
<td>1.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>KSU-MA4</td>
<td>0.15</td>
<td>0.15</td>
<td>0.10</td>
<td>1.00</td>
<td>1.00</td>
<td></td>
</tr>
<tr>
<td>KSU-MA5</td>
<td>0.38</td>
<td>0.42</td>
<td>0.47</td>
<td>0.14</td>
<td>1.00</td>
<td></td>
</tr>
<tr>
<td>KSU-MA6</td>
<td>0.44</td>
<td>0.52</td>
<td>0.54</td>
<td>0.19</td>
<td>0.50</td>
<td>1.00</td>
</tr>
</tbody>
</table>
of wheat, barley, sorghum and maize in breeding programs to improve the production and resilience against suboptimal growth environments (Talebi et al., 2008).

Some morphological and yield parameter such as grain weight, productive tillers and the days to flowering and maturity distinguished the wheat and barley genotypes very efficiently. Apart from the yield related traits, the time required by the crop to reach at the stages of flowering and maturity is vital for their adaption to different agro-ecological regions. For instance, Kumar et al. (2011) indicated that the time to flowering is very crucial part of life cycle of plant due to its strong association with the phenotypic plasticity and early maturity in case of terminal drought and/heat stresses (Farooq et al., 2011; 2014). This study was also able to identify some good genotypes of wheat and barley for their large scale commercial production in the Kingdom of Saudi Arabia. For example, the genotype KSU-WH10, KSU-WH11, KSU-WH5, KSU-WH4, and KSU-WH2 of wheat produced the most productive tillers. The genotypes KSU-WH10 and KSU-WH2 of wheat produced the bolder grains, which may be used in the future wheat breeding programs for improvement in wheat grain yield (Farooq et al., 2011). In barley, KSU-BA4 and KSU-BA2 produced the highest productive tillers while KSU-BA1 and KSU-BA2 produced the bolder grain which are useful for cultivation to maximize yield as well for the future barely breeding programs in the kingdom of Saudi Arabia.

Among sorghum genotypes, the highest leaf area was recorded in genotype KSU-SO1. In maize the highest leaf area was recorded in KSU-MA1 and KSU-MA4. More leaf area in these genotype of sorghum and maize might be due to broader leaves and these genotype might be used in the future breeding programs aimed at producing the sorghum/maize plants which possess more leaf surface area to harvest the photosynthetically active radiations (Farooq et al., 2010).

In wheat genotypes, a total of 593 polymorphic alleles; in barley, a total of 605 polymorphic alleles; in sorghum, a total of 552 polymorphic alleles; and in maize, a total of 316 polymorphic alleles were generated using AFLP and SRAP marker technique. Polymorphism percentage was (100%) in all the primer combination which depicted the high genetic diversity and broad genetic basis of the collected genotypes (Table 3). Indeed, the molecular markers, such as SRAP, are powerful tools for the assessment of genetic variations in crop genotypes due to their high polymorphism rate (as observed in this study), and high degree of discriminatory and reproducibility power (Alghamdi et al., 2015). Moreover, the highest polymorphism rates in tested cereal genotypes might be attributed to the use of very sensitive laser-based genetic analyzer detection system. This laser-based system may detect even one base pair difference among the amplicons (Tavoletti and Iommolini, 2007; Altintas et al., 2008). This highest polymorphism rate along with low values of genetic similarity index suggest that there was very high level of heterogenic in the tested cereal genotypes for the recorded traits.

The future crop production systems depend upon the available genetic diversity to reutilize these resources for crop improvement. This great variation existed in the tested wheat, maize, sorghum and barely genotypes for various morphological and yield related traits offers opportunities to exploit favourable alleles for use in the breeding program aimed at yield improvement to meet the ever increasing food demand of the world population, and to increase the adaptability of cereal genotypes under changing climate in various agro-ecological regions.

Acknowledgements

The authors are thankful for financial support from King Abdul Aziz City of Science and Technology (KACST) for this study through project No. AT-30-391.

Reference

(Received 07 February 2017; Accepted 27 February 2017)