Differential Gene Regulation of Lipid Synthesis in the Developing Seeds of Two Biodiesel Tree Species, *Jatropha* and *Vernicia*

Dan Yang1, Huaiyun Zhang1, Kuan Peng, Lili Chen, Hanjie He, Xiaoxi Huang, Jieming Qin, Gongxiu He and Dangquan Zhang1

Key Laboratory of Cultivation and Protection for Non-Wood Forest Trees (Ministry of Education) & Hunan Provincial Key Laboratory of Forestry Biotechnology, Central South University of Forestry and Technology, Changsha 410004, China

*These authors contributed equally to this work
*For correspondence: zhangdangquan@163.com

Abstract

The fatty acid compositions of *Jatropha* oil and *Vernicia* oil are strikingly different, which leads to a great difference in combustion performance, low temperature performance and oxidation stability. A comparative transcriptomic study was made in *Vernicia* and *Jatropha*, with a focus on the gene regulation of differential oil accumulation process. Transcriptome sequencing was conducted with seeds at the initial- and fast- stage of oil accumulation from both. More than 24 billion bases of cDNA sequence were obtained, with 49,583 and 45,414 high-quality unigenes identified for *Vernicia* and *Jatropha* seeds, respectively. Multiple comparative transcriptome approaches revealed a number of species-specific fatty acid desaturases (FAD2, FADX, FAH12 etc.) contributing to their differentiated fatty acid compositions in seeds of *Vernicia* and *Jatropha*. Meanwhile, the results suggested that DGAT majorly regulates TAG synthesis than PDAT in *Vernicia* seed, and PDAT may have more important role regulating TAG synthesis in *Jatropha* seed than in *Vernicia* seed. It was also implied that specific oleosins involving in oil bodies may have member bias and may affect lipid contents in seeds of *Vernicia* and *Jatropha*, as some of which were 30-50 fold up-regulated (with their RPKM values over 10,000 at fast-stage). Some important factors were identified and can differentially regulate lipid pathways in seeds of *Vernicia* and *Jatropha*. © 2016 Friends Science Publishers

Keywords: Biodiesel; Transcriptomic analysis; Lipid synthesis; Vernicia; Jatropha

Introduction

The increasing demand for diesel coupled with continuous air pollution concerns has stimulated the development for an ecologically sustainable and alternative renewable fuel source. Biodiesel production by oil-rich plants as the alternative to petroleum fuel is one of the most energy-rich and abundant forms of reduced carbon available from nature (Fairless, 2007; Durrett et al., 2008). Most of the herbaceous oilseed crops grown today are annuals. Compared to these plants, the oil trees have deeper root systems, which help store more carbon and maintain soil quality. They have therefore been advocated as potentially more efficient ways of farming, especially on degraded soils and waste lands unsuitable for food crops.

Jatropha (*Jatropha curcas* L.) of the Euphorbiaceae family is a perennial poisonous shrub originated in Central America. Much of the interest in *J. curcas* has arisen due to its ability to grow on poor quality land. Using marginal land for *J. curcas* cultivation is therefore attractive since it would not displace food-producing crops. Current estimates suggest that there are now 2.5 million hectares of *J. curcas* planted in India and China alone (King et al., 2009).

Research about *Jatropha* biodiesel ranges from oil extraction to genomics analysis (Shah et al., 2005; Sato et al., 2011). The transcriptome, proteome and genome of *Jatropha* seeds have been analyzed to facilitate the understanding of the mechanisms of oil production (Yang et al., 2009; Natarajan et al., 2010; Jiang et al., 2012).

Vernicia (*Vernicia fordii* Hems.), belonging to the same family as *Jatropha*, is well known as Tung tree and native to Southern China with a subtropical climate. It is famous with the production of Tung oil which is believed to have originated in ancient China. The use of Tung oil for lamps and furniture in the 13th century appeared in Marco Polo’s journey. Tung oil remains as a popular natural oil for finishing furniture, and for the waterproofing purpose of clothing and paper. Tung oil is also a valuable resource for biodiesel (Shang et al., 2010). Despite of its importance, the study of the molecular mechanism of Tung oil synthesis is extremely limited. Little genome-wide studies had been reported for the Tung tree thus far.

The quality and performance of biodiesel depends on the chemical composition of the fatty acids present in the oil that biodiesel with high monounsaturated fatty acid content (oleate) has excellent characteristics with respect to ignition
quality, nitrogen oxides (NOx) emissions and fuel stability (Ramos et al., 2009; Peng et al., 2016). However, most plant oils used as biodiesel feedstock have a high level of polyunsaturated fatty acids (linoleate and linolenate acids) which impacts the biodiesel with poor cold-temperature performance and low oxidative stability. Improving the fuel characteristics of biodiesel can be achieved by altering the fatty acid composition, this has been a long-standing goal of academic researchers and the biotechnology industry (Durrett et al., 2008; Graef et al., 2009; Liu et al., 2016).

The fatty acid compositions of Jatropha oil and Tung oil are strikingly different. The former is enriched in oleic acid (34.3–45.8%; 18:1), linoleic acid (29.0–44.2%; 18:2), palmitic acid (14.1–15.3%; 16:0) and stearic acid (3.7–9.8%; 18:0), while the latter contains approximately 80% elaeostearic acid, an unusual conjugated fatty acid. Generally, woody oil plants store the lipid in the form of triacylglycerols (TAGs) in kernels, and their fatty acid synthesis pathways are similar (Ohlrogge and Browse, 1995). The first step involves the synthesis of fatty acids in plastids. The second step involves the modification of these fatty acids by enzymes located primarily in the endoplasmic reticulum (ER). The third step involves the packaging of the nascent fatty acids into TAGs, which subsequently accumulate in oil bodies that bud off from the ER.

Previous investigations have confirmed that, desaturation of oleic acid (18C:1) to linoleic acid (18C:2) or linolenate acid (18C:3) is catalyzed by fatty acid desaturase 2 (FAD2) and FAD3, respectively (Sperling and Heinz, 1993; Okuley et al., 1994). Gene mutations of FAD2 in peanuts (Wang et al., 2011) and RNAi suppression of FAD2-1 in soybean (Wagner et al., 2011) showed significant variation in fatty acid composition. Meanwhile, overexpression of diacylglycerol acyltransferases (DGATs) has been shown to increase oil content in Arabidopsis (Jako et al., 2001) and soybean (Lardizabal et al., 2008). Interestingly, overexpression of soybean transcription factors GmDOF4 and GmDOF11 in transgenic Arabidopsis also resulted in increased oil content (Wang et al., 2007). These findings suggest a common multi-level and multi-component controlled lipid synthesis in oil plants, and the differential lipid compositions in Vernicia and Jatropha of interest to us might have both genome and transcriptome origins.

Next-generation sequencing technology has provided unprecedented opportunities for efficient discovery of key genes and gene functions accounting for a biological trait, as well as deciphering novel mechanisms of gene/genome regulation, through sequencing and analysis of the cDNA libraries generated from a whole transcriptome or cDNA/EST libraries from specific populations of RNA/DNA of the experimental cells and tissues (Kalvejian et al., 2008; Ball et al., 2009; Xue et al., 2009, 2013; Voineagu et al., 2011; Xiao et al., 2012). For the study of biological species without a reference genome, transcriptome sequencing offers an effective opportunity for simultaneous identification of genes encoded by a genome and their regulated expression.

In order to understand the causes of different fatty acid compositions of Jatropha oil and Tung oil at gene level, and improving their fuel characteristics, we used transcriptome sequencing strategy in seeds of Jatropha and Vernicia. We completely sequenced the polyadenylated mRNAs expressed in Jatropha and Vernicia seeds during the initial- and fast- phases of oil accumulation. We generated more than 24 billion bases of high-quality cDNA sequence and obtained 45,414 and 49,583 unigenes from the seed transcriptomes of Jatropha and Vernicia, respectively. The assembled, annotated transcriptome sequences and gene expression profiles provide useful information for the identification of genes involved in unsaturated fatty acid biosynthesis and regulation. Transcriptome analysis shows that the two oil trees express similar genes for oil synthesis, but differ significantly in their genes involving in lipid storage, highlighting the unrecognized contribution.

Materials and Methods

Sample Information

Seeds of three-years-old Jatropha or Vernicia trees were collected, with the former from a natural farmland in southern Guizhou province of China and the later from northwest Hunan province. Mature Jatropha female flowers were tagged and hand-pollinated during June 10–25, 2012 when their stigma became fully expanded, with the respective tagging dates assigned as 0 day after pollination (DAP). Vernicia seeds were similarly treated, with the sampling time set at since May 15, 2012. Seeds collected at various maturing periods were either dissected for seed weight measurement, lipid extraction, or frozen in liquid nitrogen and stored at -80°C for later RNA extraction. The seed oil content of developing seeds were extracted and measured as described by Hara and Radin (1978).

Total RNA Isolation and Library Preparation

The developing seeds of Jatropha and Vernicia at the initial stage (S1) and in the fast oil accumulation stage (S2) were picked for the transcriptome profiling experiments. Total RNA was extracted using CTAB method and treated with RNase (promega) to remove DNA. The quality and quantity of the purified RNA were determined by measuring the absorbance at 260 nm/280 nm (A260/A280) using smartspec plus (Bio-Rad). RNA integrity was further verified by 1.5% Agrose gel electrophoresis.

For each sample, 10 μg of total RNA was used for RNA-seq library preparation. Polyadenylated mRNAs were purified and concentrated with oligo (dT)-conjugated magnetic beads (Invitrogen) before used for directional RNA-seq library preparation. Purified mRNAs were iron fragmented at 95°C followed by end repair and 5’ adaptor
ligation. The reverse transcription was performed with RT primer harboring 3' adaptor sequence and randomized hexamer. The cDNAs were purified and amplified, and PCR products corresponding to 200–500 bps were purified, quantified and stored at -80°C until used for sequencing.

For high-throughput sequencing, the libraries were prepared following the manufacturer's instructions and applied to Illumina GAIIx system for 80nt single-end sequencing.

Analysis of Illumina Sequencing Results

Raw reads were first discarded if containing more than 2-N bases, then reads were processed by clipping adaptor and removing low quality bases, too short reads (less than 20nt) were also dropped. FASTX-Toolkit (Version 0.0.13) was used to get the clean reads (Blankenberg et al., 2010).

Reads Assembly

Clean Reads from all samples were combined to perform the subsequent assembly, software Trinity was used to assemble these clean reads into unigenes with a minimum length of 200bp (Haas et al., 2013).

Annotation and Functional Classification

Annotation of the assembled transcript sequences was performed using BLASTX algorithm and non-redundant protein database at NCBI and some other database, such as Nt, COG with an e-value cutoff of 1e-5 (Altschul et al., 1990). The BlastX results were also used to assess the full-length nature of the contigs. The automated BlastX analysis was done using BLAST2GO to assign GO terms for the unigenes (Gotz et al., 2008). The transcripts were classified under three GO terms such as molecular function, cellular process and biological process.

Clean Reads Alignment Statistics

Clean reads were aligned to the assembled unigenes by bowtie (Langmead et al., 2009) with 2 mismatches. Based on gene annotations of the genome, aligned reads with more than one genome location were discarded as being ambiguous. Uniquely localized reads were used to calculate reads numbers and RPKM values (RPKM represents reads per kilo base and per million). Other statistical results, such as gene coverage and depth, reads distribution along unigenes, were also obtained.

Analysis of Differentially Expressed Genes

DEGs between the test sample and control sample were analyzed by using edgeR (Robinson et al., 2010). For each gene, the p-value was computed and the significance threshold to control FDR at a given value was calculated. The fold changes were also estimated within the edgeR statistical package. A gene with Pvalue lower than 0.01 or fold change over 2 is deemed as differentially expressed in our work.

Q-PCR Analysis

RT product (1:5 diluted, 2 μL) and SYBR Green I Master Mix (Roche) were used for qPCR experiments on an ABI7300 Real-Time PCR System (Applied Biosystems, Foster City, CA, USA). The specificity of PCR was checked by melting curve analysis. In every qPCR assay, GAPDH was used as the control for the significant bias of starting materials across samples.

Statistical Analysis and Figure Plot

Sample correlation analysis, cluster analysis and the figures of representation were obtained by edgeR software and MapMan (Thimm et al., 2004).

Results

Similar Oil-accumulating Process in Developing Seeds of Vernicia and Jatropha

Seed development and oil accumulation in Vernicia seeds (Fig. 1A) seemed similar to a previous investigation on Jatropha seeds (Fig. 1B). Development from a pollinated Vernicia female flower to a mature seed took about 180 days, much longer than the reported 51 days for Jatropha seeds. Accordingly, four developmental stages from embryogenesis to seed dispersal (Fig. 1A) were defined for Vernicia. Seeds in the first stage (within 30 days after pollination, DAP) had a water content of ca. 90%. The second stage (30–90 DAP) was associated with a rapid increase in seed size, as well as a very low oil content and slightly changed water content. The third stage (90–150 DAP) came with very fast oil accumulation and significantly increased dry-weight of the kernel, while water content rapidly decreased. The last stage (after 150 DAP) seemed to be associated with nearly complete mature, and the accumulation of oil or dry material notably slowed down.

Transcriptome Landscape of the Developing Seeds from Vernicia and Jatropha

Vernicia and Jatropha seeds at two distinct developing stages (early oil accumulation stage S1, Vfo_90 DAP and Jcu_29 DAP; fast oil accumulation stage S2, Vfo_135 DAP and Jcu_37 DAP, Fig. 1C) were selected for further transcriptome investigation. To minimize the sampling error, for each selected representative, total RNAs from three seeds were independently extracted and then equally mixed for illumina library preparation.
As shown in Table 1, 50–60 million raw reads were obtained on a HiSeq2000 platform for these representatives, and removal of adaptor sequences and trimming bases yielded ~50 million high quality clean-reads. Trinity-derived transcriptome assembly assigned 69701 and 59809 transcripts for Vernicia and Jatropha, with their mean lengths as 895 and 752, respectively (NCBI's Sequence Read Archive (SRA) database GSE76386). These results implied a less complicate genome structure of Vernicia. Grouping highly similar transcripts into a single ‘unigene’ resulted in 49583 and 45414 unigenes, respectively defined for Vernicia and Jatropha, both with approximately 80% of their raw reads mappable in these defined unigenes. Finally, when annotated against Arabidopsis genes (TAIR10) with BlastX (e-value cut-off: 10^-5), 35,388 Vernicia transcripts and 32,933 Jatropha transcripts showed significant similarity with Arabidopsis genes, with 43.5% and 49.7% of Vernicia unigenes (21611 out of 49583) and Jatropha unigenes (22599 out of 45414), respectively annotated on 13333 and 13320 Arabidopsis genes.

Gene Ontology Annotation and Classification of Unigenes from Vernicia and Jatropha

The obtained Vernicia and Jatropha unigenes were translated into polypeptide sequence by ESTScan program and then analyzed by OrthoMCL program, with a Venn diagram obtained and shown in Fig. 2A. Subsequent WEGO analysis (Table 1 and Fig. 2B) showed that 11,148 and 11,293 out of annotated Vernicia unigenes (13333) and Jatropha unigenes (13320) could be categorized into 1443 and 1455 GO terms (p-value: 0.1), basically in concern with biological processes, cellular components and molecular functions.

GO analysis of the species-specific unigenes of the two (Fig. 2C) highlighted some non-orthologous gene displacements. For instance, some unigenes belonging to GO category ‘antioxidant’ (GO:0016209, GO:0004601) and ‘electron carrier’ (GO:0009055) appeared only in Vernicia, which seemed very likely to provide a more reductive environment necessary for Vernicia seeds. A similar GO category ‘nutrient reservoir’ (GO: 0045735) was observed, which might be involved in the storage of some special nutrients in Vernicia seeds. Further GO analysis of lipid metabolism- and seed development-related unigenes (Fig. 2D) showed that ‘Glycolipid transport’ (GO:0046836) and ‘steroid biosynthetic and metabolic process’ (GO:0016125) were

Table 1: Assembly and annotation of transcriptome unigenes of V. fordii and J. curcas during seed development

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Vfo S1</th>
<th>Vfo S2</th>
<th>Jcu S1</th>
<th>Jcu S2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total input reads (Cleaned)</td>
<td>54,297,859</td>
<td>60,500,795</td>
<td>56,929,935</td>
<td>51,603,303</td>
</tr>
<tr>
<td>Assembled reads</td>
<td>48,088,064</td>
<td>50,321,932</td>
<td>50,223,238</td>
<td>44,705,136</td>
</tr>
<tr>
<td>Transcripts</td>
<td>69,701</td>
<td>75,809</td>
<td>75,04</td>
<td>75,04</td>
</tr>
<tr>
<td>Average transcript length (bp)</td>
<td>894.51</td>
<td>201</td>
<td>201</td>
<td>201</td>
</tr>
<tr>
<td>Minimum transcript length (bp)</td>
<td>12,719</td>
<td>7,499</td>
<td>7,499</td>
<td>7,499</td>
</tr>
<tr>
<td>Maximum transcript length (bp)</td>
<td>1,508</td>
<td>1,221</td>
<td>1,221</td>
<td>1,221</td>
</tr>
<tr>
<td>Unigenes</td>
<td>49,583</td>
<td>45,414</td>
<td>35,608,464</td>
<td>37,572,831</td>
</tr>
<tr>
<td>Total mapped reads</td>
<td>41,450,782</td>
<td>39,588,784</td>
<td>33,291,521</td>
<td>36,963,391</td>
</tr>
<tr>
<td>Unique mapped reads</td>
<td>41,064,099</td>
<td>38,096,184</td>
<td>32,933</td>
<td>32,933</td>
</tr>
<tr>
<td>Transcripts with Ath homologs</td>
<td>35,388</td>
<td>2,837</td>
<td>3,310</td>
<td>3,310</td>
</tr>
<tr>
<td>Non-Ath transcripts with NR homologs</td>
<td>21,611</td>
<td>22,599</td>
<td>13,333</td>
<td>13,320</td>
</tr>
<tr>
<td>Unigenes annotated by Ath</td>
<td>13,333</td>
<td>13,320</td>
<td>10,615</td>
<td>10,786</td>
</tr>
<tr>
<td>Annotated Ath genes</td>
<td>21,611</td>
<td>22,599</td>
<td>13,333</td>
<td>13,320</td>
</tr>
<tr>
<td>Unigenes with GO annotations</td>
<td>21,611</td>
<td>22,599</td>
<td>13,333</td>
<td>13,320</td>
</tr>
<tr>
<td>Total GO terms</td>
<td>1,443</td>
<td>1,455</td>
<td>1,443</td>
<td>1,455</td>
</tr>
</tbody>
</table>

Vfo: Vernicia fordii; Jcu: Jatropha curcas; Ath: Arabidopsis thaliana

Fig. 1: Characterization of Vernicia (A) and Jatropha (B), seed development stages, appearance and size of Vernicia and Jatropha seeds at stage S1 and S2 (C)
Fig. 2: Comparison and characterization of *Vernicia* and *Jatropha* unigenes found that they showed very similar transcriptome compositions but big differences in lipid storage and seed development. (A) Venn diagram showing the majority gene families were shared between *Vernicia* and *Jatropha*. (B) Gene Ontology classification of assembled unigenes also revealed similar transcriptome organization in terms of GO terms and their relative frequencies. The results are summarized in three main categories: Cellular component, Molecular function and Biological process. In total, 11,148 and 11,293 unigenes with BLAST matches to known proteins from *Vernicia* and *Jatropha* were assigned to gene ontology, respectively. (C) Gene Ontology classification of *Vernicia* and *Jatropha* specific unigenes. (D) Biological processes classification of *Vernicia* and *Jatropha* specific unigenes which were related to oil accumulation and seed development. (E) Comparison of the unigenes from Tung tree, *Jatropha* and soy bean and *Arabidopsis*. (F) Gene Ontology classification of *Vernicia* specific unigenes

soley detected in *Vernicia* seed. On the contrary, genes in the functional term of ‘embryonic meristem development’ (GO:0048508) were enriched only in *Jatropha*. Venn diagram (Fig. 2E) of *Vernicia, Jatropha* as well as *Glycine max* and *Arabidopsis thaliana* (two model oil plants with their transcriptome data downloaded from Phytozome data base, http://www.phytozome.net/) showed that *Vernicia* was genetically close to *Jatropha*, with more unique unigenes enriched in *Vernicia* seeds (1944vs1267). All 1944 unique unigenes from *Vernicia* seeds was further analyzed by GO annotation and classification (Fig. 2F), and these unigenes sporadically distributed in diverse functional terms such as antioxidiant, metabolic process, response to stimulus and biological regulation.

Fig. 3: MAPMAN diagrams showing differential expression patterns of metabolic pathway genes in stage S1 and S2. Ratio data were converted to a log base 2 scale and imported into MAPMAN. Blue boxes represent individual genes that are down-regulated in senescence, red boxes represent individual genes that are up-regulated. Intensity of the color indicates the relative level expression. (A) Expression patterns of metabolic pathway genes in *Vernicia*. (B) Expression patterns of metabolic pathway genes in *Jatropha*

General Gene Expression Profile of *Vernicia* and *Jatropha*

The expression levels of all identified *Vernicia* and *Jatropha* unigenes were analyzed by reads per kb per million reads (RPKM) method and edgeR program, with 8,590 up-regulated and 6,623 down-regulated unigenes determined for *Vernicia*, while 12,891 up-regulated and 10,127 down-regulated unigenes for *Jatropha*. Further analysis of these unigenes was carried out by MapMan software, and the results Additional analysis of the unigenes differentially expressed in the two developing stage of *Jatropha* and *Vernicia* was carried out by MapMan software, yielding similar results (Fig. 3). To validate the above expression profiles derived from RPKM analysis, a total of 20 unigenes were randomly selected for quantitative RT-PCR assays, and for all selected unigenes, RT-PCR results matched well with statistics from RPKM analysis (Supplementary Fig. S1).

K-means Clustering analysis was used to further group all unigenes into clusters based on their common expression patterns at the two stages. A total of 20 distinct clusters were obtained (Fig. 4), with genes in each cluster listed in Supplementary Dataset S1. Clusters 6, 9 and 12 contained unigenes up-regulated in *Vfo_S2*, while unchanged in *Jatropha*. On the contrary, Clusters 2, 3, 10, 15 and 20 contained genes up-regulated in *Jcu_S2*, while unchanged in *Vernicia*. Interestingly, unigenes encoding 2 oleosins (comp26826_c0 and comp15571_c0) and 3 seed storage proteins (comp25375_c0, comp12120_c0 and comp15608_c0) in *Vernicia*, as well as unigenes encoding 1 oleosin (comp13078_c0) and 4 seed storage proteins (comp17433_c0, comp27581_c0, comp13072_c0 and comp13089_c0) in *Jatropha*, were identified with outstandingly high expression levels...
According to GO analysis, these unigenes are mainly involved in protein/lipid storage processes, which obviously count much at late maturation stage.

Transcript Analysis of Lipid Pathways Related Unigenes from *Vernicia* and *Jatropha*

For both *Vernicia* and *Jatropha*, over 100 unigenes (Supplementary Dataset S2) were identified by GO annotation as involved in lipid metabolism (Fig. 5A). Comparison of these enzymes and/or protein complexes transcript levels (Fig. 5B) and changes between stage S1 and S2 (Fig. 5C), while indicated similar expression patterns, also revealed some exceptions between *Vernicia* and *Jatropha* seeds.

For the fatty acid synthesis step, there were at least 14 homologous pairs of enzymes and/or protein complexes responsible for pyruvate to fatty acids conversion. Comparative analysis of their expression levels at stage S1 and S2 showed that in both cases, acyl carrier protein (ACP) and stearoyl-ACP desaturase (SAD) were obviously up regulated (less than 2 fold at most), while pyruvate dehydrogenase complex (PDHC) and acetyl-CoA carboxylase (ACCase) involved in the initial synthesis exhibited much higher expression levels than those involved in elongation stage such as malonyl-CoA: ACP malonyl transferase (MCMT) and ketoacyl-ACP synthase (KAS). FATA/FATB thioesterases responsible for the production of 16- or 18-carbon fatty acid were differentially regulated, with FATA up-regulated in S2 and quite opposite for FATB in both *Vernicia* and *Jatropha*.

For TAG assembly (Kennedy pathway), 9 pairs of homologous enzymes were identified. Most of these enzymes encountered little change in their expression levels, except for phosphatidate phosphatase (PP) and diacylglycerol acyltransferase (DGAT). Twenty unigenes within nine PP isoforms (the largest gene families in TAG assembly pathway) were identified in our work, yet the average RPKM values of all these unigenes from both the two species remained less than 20, implying a relatively inactive involvement in the S1 to S2 switch.
Fig. 6: The potential regulatory factors expression levels in stage S1 and S2 of Vernicia and Jatropha, respectively. Vfo: Vernicia fordii; Jcu: Jatropha curcas

In comparison, enzymes in concern with fatty acid modification and oil accumulation encountered the most significant regulation, with oleate desaturase (FAD2), linoleate desaturase (FAD3), oleateΔ12-hydroxylase (FAH12, only expressed in Jatropha) and Δ12 fatty acid conjugase (FADX, only expressed in Vernicia) identified for this category. Most of these transcripts were over 4-fold up-regulated (in particular, over 70 times for FADX gene in Vernicia), except for FAD3 in Jatropha (almost unchanged). Notably, FAD2 from Jatropha was the only one down-regulated at S2 stage, which might be related to the preference over oleic acid in Jatropha. On the other hand, all fatty acid storage-related transcripts (Fig. 5C) were substantially up-regulated at S2 stage. In particular, oleosin genes showed the highest RPKM value among all transcripts in lipid metabolic pathway (near 10,000 in Vfo S2 and over 20,000 in Jcu S2), which might be related to their active involvement in the storage of certain kinds of lipids.

Besides, at least 8 regulatory factor genes playing important roles in lipid synthesis were identified, and their expression patterns looked quite different (Fig. 6). For instance, the expression of Leafy Cotyledon 1 (LEC1) was the highest in both Vernicia and Jatropha, while ABA insensitive 4 (ABI4), LEC2 and FUSCA 3 (FUS3) exhibited very low expression levels (Fig. 6 and Supplementary Dataset S2). The expression level of PICKLE (PKL) was down-regulated during S1 to S2 switch in both Vernicia and Jatropha, and consistently, ABI3 transcript under its inhibition showed significant up-regulation during this switch. Interestingly, LEC1, PKL and WRINKLED1 (WRI1) as a group, showed quite opposite trends in their expression level during S1 to S2 switch in Vernicia (coincidentally up-regulated) and Jatropha (down-regulated).

Discussion

Regulation of lipid producing in oil trees is of great interest to researchers and in-depth recognition of their biosynthesis logic may hopefully help us developing genetically engineered bio-systems to solve future energy problems. Here we analyzed and compared the developing seeds of two Euphorbiaceae plants, Vernicia and Jatropha, with a focus on the correlation between their transcriptome profiles and final lipid compositions. Our results disclosed a number of desaturases, transferases, regulators and preservers important for lipid synthesis in these two plants and they are discussed below:

Vernicia and Jatropha seed oil dramatically differ in their fatty acid compositions, with α-oleostearic acid (C18:3, 70%) being the overwhelming component for the former while oleic acid (C18:1, 30%) and linoleic acid (C18:2, 50%) for the latter. Previous work has proved successive fatty acid desaturations in various oil plants, including the stearic acid to oleic acid conversion catalyzed by SAD, subsequent linoleic acid formation by FAD2, as well as α-linoleic acid or α-oleostearic by FAD3 and FADX, respectively.

In Jatropha seeds, our results showed a steadily high expression of SAD for the two selected stages, while FAD2 was significantly down-regulated from an initial high level at the fast accumulation stage. These findings perfectly match a previous study, in which oleic acid content increased since 29 DAP, while linoleic acid content increased constantly and then declined after 35 DAP. A later down-regulation of FAD2 may well explain the relatively high content of oleic acid observed in Jatropha seeds. In Vernicia seeds, all the fatty acid desaturase genes (FAD2, FADX and FAD3) were up-regulated. A six-fold up-regulation was observed for FADX over FAD3 during the fast accumulation stage, although both were at a high expression level. Such a bias might make α-oleostearic accumulation almost the only outcome and cause its overwhelming amount in mature Vernicia seeds.

In most oil plants, the final DAG to TAG conversion is catalyzed by Diacylglycerol acyltransferase (DGAT) or phospholipid:diacylglycerol acyltransferase (PDAT), with acyl-CoA or phospholipid as their respective acyl donors (Kennedy, 1961; Dahlqvist et al., 2000). Consistently, 3 DGAT unigenes and 2 PDAT unigenes were identified from both Vernicia and Jatropha in our work. In Vernicia seeds, DGAT1 unigene expression seemed to be at a low level for the two selected stages, while both DGAT2 and DGAT3 were maintained at a much higher level, with significant up-regulation (5.8 fold) observed for DGAT2 and slight down-regulation (2.7 fold) for DGAT3 at the fast stage. Compared with DGATs, the 2 PDAT unigenes were all along maintained at a relatively low expression level. These findings suggested that in Vernicia seeds, TAG synthesis is mainly catalyzed by DGAT, with DGAT3 presumably responsible for an initial maturation, while DGAT2 counts more latter. In Jatropha seeds, on the contrary, no significant change was observed for the expression levels of all DGAT and PDAT unigenes. Meanwhile, expression levels of PDAT unigenes were slightly higher than those in Vernicia seed. These results indicated TAG synthesis in Jatropha seed
might be regulated coordinately by PDATs and DGATs.

Oleosins are vital in seed tissue for controlling oil body structure and lipid accumulation (Jolivet et al., 2004; Siloto et al., 2006). Inhibition of the major oleosin gene (18 kD) expression in Arabidopsis resulted in unusually larger oil bodies, disruption of storage organelles and significant decrease in the amount of lipids (Siloto et al., 2006). On the contrary, overexpression of soybean oleosin gene (24 kD) in transgenic rice seed significantly improved the lipid content with massive smaller oil bodies (Cao et al., 2014). In our work, oleosins were identified from both Vernicia and Jatropha, each with 6 distinctive members. Oleosin unigenes (comp26826_c0 and comp15571_c0 in Vernicia, comp27587_c0 and comp13078_c0 in Jatropha) were extraordinarily up-regulated at the fast accumulation stage, with RPKM values over 10,000 for Jatropha type. Significant up-regulations of these genes, except for comp13078_c0 from Jatropha, were also confirmed by K-means Clustering method. These results implied directing roles of oleosins over TAGs with different fatty acid compositions, their preferences for specific unsaturated fatty acids (Liu et al., 2011) might result in the selective accumulation of certain TAGs.

The LEC1 plays key roles in regulating embryo development. LEC1 overexpression causes increased fatty acid content in Arabidopsis (Mu et al., 2008), Maize (Shen et al., 2010) or Brassica napus (Tan et al., 2011). In Arabidopsis, overexpression of LEC1 resulted in over 58% genes of lipid pathway were up-regulated (Mu et al., 2008). LEC1 acted as positive regulators upstream of WR11, FUS3 and ABI3, which controlled the expression of genes involved in fatty acid and TAG synthesis (To et al., 2006). WR11 can regulate the steps transferring pyruvate into fatty acid synthesis (Shen et al., 2010). PII can regulate ACCase activity by interacting with BCCP subunits of heteromeric HtACCase (Feria Bourrellier et al., 2010), which was regulated by WR11 (Baud et al., 2010). ABI3 and FUS3 were key regulatory factors involved in TAG synthesis (Yamamoto et al., 2010). In the regulatory system “LEC1-WR11-PII”, LEC1 had a significant down-regulation in fast oil accumulation stage of Jatropha seeds, and a series of downstream factors and genes (e.g., WR11, PII, BCCP, FAD2) displayed the same trends, which was also observed in previous research (Jiang et al., 2012). However, the contrary situation was observed in Vernicia seed, and both these genes were distinctly up-regulated. The oppositely regulated in these two seeds might origin from their different growth cycles as well as lipid compositions. For Vernicia seeds with an absolute majority of oleostearic acid content and a much longer maturation process, these genes and factors might have to remain active until a set maturity is achieved. In the regulatory system “LEC1-ABI3”, up-regulation of ABI3 in both Jatropha and Vernicia at fast accumulation stage seemed very likely concerned with ABI3’s crucial roles in TAG accumulation and oil body stability (Crowe et al., 2000; Monke et al., 2012). Meanwhile, ABI3 was negatively regulated by PKL both in seeds of Vernicia and Jatropha, which accords with its ABI3-repressing activity (Perruc et al., 2007). The expression change of PKL unigene was contrary to ABI3 both in seed of Vernicia and Jatropha. FUS3 might act as a negligible regulator here, though previous investigations on other plants proposed an inter-regulation with ABI3.

Conclusion

Among 49583 and 45414 unigenes respectively identified for Vernicia and Jatropha, 15,213 and 23,018 unigenes exhibited ≥2-fold expression changes for the two selected developing stages. Further analysis showed that the different fatty acid compositions and lipid contents observed in Vernicia and Jatropha seeds might origin from the differential expression of a series of key genes (such as FAD2, FADX, DGAT, oleosins etc.) and regulatory factors (such as LEC1, WR11 and ABI3). These results would be helpful in understanding the regulation of oil accumulation in Vernicia and Jatropha seeds, further elucidations on molecular regulatory mechanisms of these genes, as well as transgenic oil-crops, may hopefully provide new bio-diesel resources in the future.

Acknowledgement

The research work was supported by grants from the National Natural Science Foundation of China (31170640, 31172257).

References

(Received 13 July 2016; Accepted 08 August 2016)