Biofiltering and Uptake of Dissolved Nutrients by *Ulva armoricana* (Chlorophyta) in a Land-based Aquaculture System

A.O. Amosu1, D.V. Robertson-Andersson2, E. Kean3, G.W. Maneveldt4 and L. Cyster4

1Department of Biodiversity & Conservation Biology, Faculty of Natural Sciences, University of the Western Cape, Private Bag X17, Bellville, 7535, South Africa
2School of life sciences, University of KwaZulu-Natal (UKZN), Postal address: Private Bag X54001, Westville, Durban 4000, South Africa
3Institute for Microbial Biotechnology & Metagenomics, Faculty of Natural Science, University of the Western Cape, Private Bag X17, Bellville, 7535, South Africa
4For correspondence: aamosu@uwc.ac.za

Abstract

An on-land flow-through cultivation system was designed for the macroalgal species *Ulva armoricana* (Chlorophyta) to reduce the environmental impact of aquaculture effluent in coastal ecosystems as part of an integrated aquaculture system. The macroalgae was cultured in various enriched media at a stocking density of 500 kg wet weight/pond. Overall, *U. armoricana* was able to remove a greater percentage of inorganic nitrogen in the double fertilizer ratio. The total dissolved phosphate was higher in standard seawater. *U. armoricana* showed preference for bioaccumulation, with ranges as follows: zinc (9.908 – 32.942 mg.kg\(^{-1}\)); copper (1.893 – 5.927 mg.kg\(^{-1}\)); cadmium (0.254 – 1.500 mg.kg\(^{-1}\)); and lead (none detected). Apart from the presence of cadmium (Cd), the algal biomass produced at the end of the experiment was of a relatively good quality with limited heavy metal contamination so that *U. armoricana* could be successfully used as a plant stimulant but not as part of a feed formulation for livestock and for the food industry. This study showed that *U. armoricana* can effectively be used as a biological filter for dissolved nutrient uptake from aquaculture effluents. The prospect of better management practices, based on the utilization of *Ulva* mariculture designs, bodes well for the aquaculture industry. ©2016 Friends Science Publishers

Keywords: Dissolved nutrients; Fertilizer; Heavy metals; Integrated multitrophic aquaculture (IMTA); Macroalgae; *Ulva armoricana*

Introduction

Global aquaculture production continues to improve at about 10% annually, outpacing terrestrial livestock production and capture fisheries (FAO, 2010). However, the rapid development of intensive aquaculture along coastal areas throughout the world has raised increasing concerns on environmental degradation and specifically the impact of nutrient loading if these industrial production practices are not sustainably managed using the best available technology (BAT) (Haylor and Bland 2001; Pauly et al, 2003; Zhou et al., 2006; Troell, 2009; Ihnsan, 2012). Waste products from aquaculture activities consist mainly of CO\(_2\), nitrogen, phosphorus, and heavy metals.

Aquaculture waste can result in pollution that contributes to the degradation of the environment through (organic and inorganic inputs) agro-allied and industrial activities that can lead to a substantial increase of organic matter and nutrient loading into adjacent water bodies. Modern integrated aquaculture systems like (non-fed aquaculture) macroalgae-based aquaculture contribute to eco-monitoring by playing a significant role in coastal wastewater filtration and bioaccumulation (Costa-Pierce et al., 2011; Klinger and Naylor, 2012; Boxman, 2013; Redmond et al., 2014). This is due largely to the ability of macroalgae to achieve high biomass and have a significant potential as nutrient bioremediators (Msuyu and Neori, 2002; Tyler and McGlathery, 2006; Marinho-Soriano et al., 2009; Winberg et al., 2011).

In aquatic environments, nitrogen and phosphorus (major aquaculture contaminants), are the two most important nutrients that usually limit biomass production of macroalgae (Smith and Smith, 1998; GESAMP, 2001; UNEP and Gems Water, 2006). Nitrogenous compounds (NH\(_4^+\), NO\(_3^-\), and NO\(_2^-\)) have been indicted as a source of pollution in aquaculture effluent due to discharge of untreated non-point aquaculture run-off, animal waste and failed technology practices. According to estimates, 78 kg N and 9.5 kg P per ton of fish are released into water bodies per year. This is because about 72% N and 70% P constituent of feed are not utilized in the fish physiology (Ackefors and Enell, 1994; Chopin et al., 1999).
In the past few decades, increasing emphasis has been placed on developing sustainable approaches to coastal aquaculture development of large-scale Integrated Multitrophic Aquaculture (IMTA) seaweed farming (Robertson-Andersson, 2007; Smith et al., 2010; Redmond et al., 2014). The integrated culture system provides mutual benefits for the cultured organisms and improves water quality of the aquaculture system. Macroalgae take up inorganic nutrients for growth and can thus alleviate the seasonal nutrient depletion from aquaculture (Chopin et al., 2001; Neori et al., 2004). Several aquaculture research and development efforts have shown the efficiency and benefits of integrating macroalgae in on-land treatment systems for treating aquaculture waste effluents before being discharged into open water bodies (Winberg et al., 2011; Dittert et al., 2012; Renzi et al., 2014).

Macroalgae have found applications in the removal of nutrients from effluent waters of sewage, industry and aquaculture. More recently it has been demonstrated that using different dissolved CO₂ concentrations in seawater, has the potential to improve nutrient uptake, a possible solution to the problems associated with coastal eutrophication around the world (Zou and Gao, 2009). Furthermore, research findings have also demonstrated that the incorporation of co-cultured organisms from different trophic levels is the basis for sustainable and safe aquaculture practices (Chopin et al., 2001; Neori et al., 2004). This is so because in the polyculture of integrated fauna and macroalgal mariculture, the wastes from one consumer become a resource for the other in the mutually beneficial system. This integrated approach gives nutrient bioremediation efficacy, mutual benefits to co-cultured organisms, and results in a more stable aquaculture environment (Neori et al., 2000; Chopin et al., 2001).

Tissue metal contents are also potential hazard prediction indices for organisms and the environment when natural concentrations are higher than the maximum standard recommended by monitoring agencies (Ayers and Westcot, 1994; Almela et al., 2002, 2006; Smith, 2009; Sánchez-Bayo et al., 2011). Macroalgae naturally take up elements like Na, K, Ca, Mg, Cl, I and Br from the surrounding water bodies. The major metallic pollutants implicated in culture systems and coastal waters are Pb, Cr, Hg, U, Se, Zn, As, Cd, Au, Ag, Cu and Ni among which Cd is readily absorbed in a combined state with sulphur, chlorine and oxygen and stored in the algal thalli (Komjarova, 2009; Dittert et al., 2012; Renzi et al., 2014). Green macroalgae (Chlorophyta) are known to be a significant biological indicator of heavy metal contamination in marine ecosystems (Nelson et al., 2010). Various studies have demonstrated the use of green macroalgae from the genus Ulva as a bio-filter/monitor of coastal contamination because of their relatively simple morphology, high tissue bioaccumulation, and widespread distribution (Alkalhia et al., 2012; Zoll and Schijf, 2012; Renzi et al., 2014).

In IMTA, bio-filtration processes easily remove considerable amounts of pollutants contained in the outflowing water, resulting in a reduced permissible discharge into open water bodies. The development of such systems requires the removal of solid compounds and dissolved metabolites contained in the outlet water of the systems. The specific justification of this research has evolved from aquaculture’s environmental consequences, and the nutrient enrichment of the outlet water systems associated with more general aquaculture practices. Aquaculture practices generally lead to high nutrient loading that can facilitate changes in the natural dynamics of water bodies and can lead to oxygen depletion, green tide (harmful algal blooms) events, eutrophication, fish kills, low productivity, increased risks of infectious diseases, and deterioration of the groundwater with serious consequences for human health, the environment and economic development (Van Alstyne et al., 2007; Nelson et al., 2010; DEC, 2014; Redmond et al., 2014). In this study, we investigated the nutrient uptake potential, efficiency and bioaccumulation potential of the green macroalga Ulva armoricana in an outdoor, on-land flow-through paddle wheel system.

Materials and Methods

Ulva Materials

Ulva armoricana used in this experiment was sampled from the I & J Cultured Abalone farm (34°34’60” S; 19°21’0” E) and were transported to the research farm at Benguela Abalone Group (32°54’24” S; 17°59’17” E) on the West Coast of South Africa. Samples were rinsed with filtered seawater and gently scrubbed to remove sediments and any epiphytes. The specimens were then stabilized in a culture for 3-4 days (acclimatization) under a continuous flow of seawater pumped from the ocean (mean nutrient concentrations were 0.6 μM NH₄⁺, 0.5 μM NO₂⁻, NO₃⁻ and 0.7 μM PO₄³⁻) and kept at 20°C in concrete paddle ponds.

Experimental Systems

Macroalgae production experiments were carried out during winter in four 32 m X 8 m (180 m³) concrete paddle ponds and filled to approximately 0.55 m depth with unfiltered seawater in a flow-through system (Fig. 1). Ponds received two volume exchanges per day. The experimental treatments were as follows:

- 0 X base pond with standard seawater (control).
- 2 X nutrients added to improve growth (double fertilizer ratio).
- 4 X nutrients added to improve growth (quadruple fertilizer ratio).

Initial Ulva biomass of 500 kg wet weight was stocked in each pond and growth rates were measured after 21 days.
The algae were fertilized (7 days before the experiment in order to allow assimilation) with a mixture of (10:16:0) Maxipos® and ammonium sulphite at 100 g/kg providing both nitrogen and phosphorus respectively (algae need N & P in a ratio: 16 atoms of N for every 1 atom of P - Greenfield et al., 2012). Fertilization was carried out in the evenings with the incoming water turned off and the paddle wheel remaining in motion. The mean physico-chemical parameters measured during the experiment include temperature (17°C), pH (6.53), and dissolved oxygen (8.07 mg L⁻¹).

Water Sampling and Analysis

Water samples were collected at 10:00 and every hour thereafter for 24 h to determine the inorganic nutrients concentrations. Four inorganic nutrients were measured 12 times at different intervals and included Ammonium (NH₄⁺), Nitrate (NO₃⁻), Nitrite (NO₂⁻) and phosphorus (PO₄³⁻). Analysis of the various inorganic nutrients Ammonium, Nitrate, Nitrite and Phosphorus were determined using a Spectroquant® Pharo 300M. The detailed chemical analysis methods were done photometrically based on the manufacturer’s manual – Merck KGaA, (Germany) www.merck-chemicals.com/test-kits, www.merck-chemicals.com/photometry. The amount of light (µE m⁻² s⁻¹) was also recorded as irradiance levels and were measured using a Biospherical Instruments probe (QSP200). Algal tissue metal content was determined every 21 days for 3 months. The heavy metals tested for included cadmium (Cd), copper (Cu), zinc (Zn) and lead (Pb), using an Atomic Absorption Spectrophotometer (AAS), Unicam Atomic Absorption – M Series), Unicam Limited, U.K.

Statistical Analysis

The design of the experiment was completely randomized with three replications. Apart from light and temperature data collected every hour, other inorganic nutrients were sampled every three hours for 24 h. For heavy metals, % N and % P significance differences were used to juxtapose with standards. Data are presented as means ± standard deviation (SD). All data were analyzed using GraphPad Prism5.

Results

Our findings show that nutrient availability followed the fertilizer ratio (Fig. 2-7; Table 1). Availability of Ammonium (NH₄⁺) showed a diurnal variation with the different treatments, the highest being observed during the day (0.18 mg L⁻¹) in the quadruple fertilizer ratio (12:00 pm) and reducing with time, its lowest (0.04 mg L⁻¹) value recorded at 6:00 pm (seawater), 6:00 pm and 4:00 am (double fertilizer ratio), and 10:00 pm (quadruple fertilizer ratio) respectively. Nitrate (NO₃⁻) was highest in the quadruple fertilizer ratio (8 mg L⁻¹), with the lowest value (0.11 mg L⁻¹) occurring at 10:00 pm and 10:00 pm in the double fertilizer ratios. Nitrite (NO₂⁻) was stable in the treatments and ranged from 0.01 – 0.02 mg L⁻¹, but was highest in the seawater control at 0.03 mg L⁻¹ at 12.00 pm. Phosphorus (PO₄³⁻) availability in the different treatments increased with day time and attained a peak (0.44 mg L⁻¹) at 2:00 pm (quadruple fertilizer ratio), while the lowest value (0.06 mg L⁻¹) was observed in the seawater control at 10:00 am. Temperature in this study ranged between 14.1 – 20.7°C and was a function of the availability of day light, which showed a gradual decrease in photoperiod (0 – 1900 µE m² s⁻¹) with time (16:8 h light: dark). With regards to heavy metals, U. armoricana showed a preference for bioaccumulation, which ranged as follows: zinc (9.908 – 32.942 mg.kg⁻¹); copper (1.893 – 5.927 mg.kg⁻¹); cadmium (0.254 – 1.500 mg.kg⁻¹); and lead (none detectable). The results also showed that U. armoricana’s assimilation affinity decreased as follows: double > quadruple > 0 (Table 1). Apart from cadmium, heavy metal contamination levels in cultured U. armoricana showed safe uptake mechanisms in all fertilizer ratios compared to various local and international standards.

Discussion

Aquaculture effluents are rich in NH₄⁺ that could come from feed and nutrients in the inlet water. Although NH₄⁺ concentrations > 2.0 mg L⁻¹ can be detrimental (Lazur 2007), aquaculture effluents are highly suitable as a nutrient source for Ulva species. Values of NH₄⁺ in this study were comparatively low. NH₄⁺ in winter is typically low due to the lower mean temperatures (Fig. 6 and 7) and pH. These results are consistent with those reported by Robertson-Andersson (2007). Nitrate-nitrogen concentrations above 3 mg L⁻¹ and any detectable amounts of total P (above 0.025 mg L⁻¹) may be indicative of pollution from fertilizers, manures or other nutrient-rich wastes (Cole et al., 2014). Nitrogen and phosphorus are nutrients that may cause increased growth of aquatic plants and algae. Dissolved inorganic phosphorus (DIP) obtained in this study corroborated the outcome of a related experimental investigation by Robertson-Andersson (2007). Nitrites from feed are not toxic to seaweed. Several authors have reported assimilation rates of NH₄⁺ in the range of 50–90 µmol N g⁻¹ DW h⁻¹ among different Ulva species, and these species have been verified as successful biofilters of aquaculture wastewaters (Hernández et al., 2002; Neori et al., 2003; Copertino et al., 2009; Cahill et al., 2010). Nitrite results from enriched nutrients and there is evidence of nitrate uptake during the day (Potgieter, 2005; Robertson-Andersson, 2007). The inorganic nutrients observed in this study were below the South African water quality guidelines for Ammonium (NH₄⁺), Nitrate (NO₃⁻), Nitrite (NO₂⁻), and phosphorus (PO₄³⁻) (DWAF, 1996).
Light intensity is well correlated with temperature, which is largely subject to diurnal and seasonal changes both in irradiance and photoperiodic systems. This finding differs from those of Lüning (1993) and Kirk (1994) who showed that light intensity correlated with day length and not temperature. Most outdoor culture systems research on Ulva showed that the alga could readily be cultured at 15 – 20°C and at 400 – 1000 µEs−1m2 (Winberg et al., 2011; Corey et al., 2012, 2014). These values are similar to the irradiance and photoperiod ranges found in the present study using U. armoricana. This study showed that double fertilized U. armoricana had high Cd, Cu and Zn values, but values for Cu, Pb and Zn were lower than the permissible South African limits for lettuce (Table 1). Concentrations of Cd in all treatments were, however, higher than SA limits for lettuce. This may be due to the rate of fertilizer application. Only low/trace levels of Pb were

Table 1: Heavy metals and nutrient composition in U. armoricana grown in the various experimental treatments

<table>
<thead>
<tr>
<th>Heavy metals/nutrient</th>
<th>Experimental Treatments (Mean ± SD)</th>
<th>Standards</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Seawater (0 fertilizer)</td>
<td>Double fertilizer ratio</td>
</tr>
<tr>
<td>Cd</td>
<td>0.639±0.023ᵃ</td>
<td>1.166±0.360ᵇ</td>
</tr>
<tr>
<td>Cu</td>
<td>4.619±1.193ᵃ</td>
<td>5.676±1.367ᵃ</td>
</tr>
<tr>
<td>Pb</td>
<td>ND</td>
<td>ND</td>
</tr>
<tr>
<td>Zn</td>
<td>18.640±4.814ᵃ</td>
<td>20.244±2.011ᵇ</td>
</tr>
<tr>
<td>% N</td>
<td>2.122±0.862ᵃ</td>
<td>3.220±0.494ᵃ</td>
</tr>
<tr>
<td>% P</td>
<td>1.789±0.082ᵃ</td>
<td>1.711±0.318ᵃ</td>
</tr>
</tbody>
</table>

Means in the same row with the same superscript are not significantly different (p > 0.05), ⁴ South Africa Government Gazette, 9 September, 1994, metals in foodstuffs, cosmetics and disinfectants act, (Act no. 54 of 1972), ⁵ FAO/WHO (2001) standard for seaweed/vegetable, *⁶ Australia recommended leaf nutrient concentrations, GMP = Good manufacturing practices (GMP) must be followed (hygiene, low temperature, and disinfection) as in packaging gas. ND = none detected

Fig. 1: Flow-through, paddle-wheel raceways are the preferred method for growing Ulva

Fig. 2: Ammonium (NH₄⁺) time graph for different fertilizer ratios

Fig. 3: Nitrate (NO₃⁻) time graph for the different fertilizer ratios

Fig. 4: Nitrite (NO₂⁻) time graph for the different fertilizer ratios

20°C and at 400 – 1000 µEs−1m² (Winberg et al., 2011; Corey et al., 2012, 2014). These values are similar to the irradiance and photoperiod ranges found in the present study using U. armoricana. This study showed that double fertilized U. armoricana had high Cd, Cu and Zn values, but values for Cu, Pb and Zn were lower than the permissible South African limits for lettuce (Table 1). Concentrations of Cd in all treatments were, however, higher than SA limits for lettuce. This may be due to the rate of fertilizer application. Only low/trace levels of Pb were
found in seawater and in fertilized *U. armoricana*. Apart from Pb that was not detected in all treatments, the other heavy metals had values higher than the FAO/WHO (2001) standard for seaweed/vegetable. The main observation here seems to be that cultured *U. armoricana* at Benguela Abalone Group tended to have higher levels of heavy metals than *Ulva* from the unfertilized/seawater tanks. This result is contrary to the findings of Shuuluka (2011).

The Cd values in this research were higher than the maximum recommended level for Cd in the FAO/WHO (2001) standard for seaweed/vegetable, the South African limits for lettuce, the French limits for edible seaweeds (<0.5 μg g⁻¹ dw, Besada *et al*., 2009) and the Australian and New Zealand limits for edible seaweeds (0.2 μg g⁻¹ dw, Almela *et al*., 2002, 2006; Besada *et al*., 2009). The high Cd concentrations in the current study could well have originated from the unfiltered seawater and/or the fertilizer (Shuuluka 2011). Irrespective of the source, our Cd values negate the use of these seaweeds for human consumption.

Conclusion

As human health is directly affected by ingestion of vegetables, the biomonitoring of trace elements in macroalgae needs to be continually monitored because these algae are the main sources of food for humans in many parts of the world. It is therefore of great importance that South Africa implements a continuous update of its seaweed safety monitoring by formulating a standard guideline and permissible limits of nutrients in macroalgae that must be strictly adhered to by all industries.

Acknowledgement

We thank the management and staff of I and J Cultured Abalone and Benguela Abalone Group, West coast, South Africa for the paddle wheel ponds used in this study. Also we thank Robert J Anderson of the Department of Agriculture, Forestry and Fisheries (DAFF), Seaweed Unit, Marine and Coastal Management, University of Cape Town, Cape Town, South Africa. The Department of Biodiversity and Conservation Biology at the University of the Western Cape, and the Department of Biological Sciences at the University of Cape Town are also thanked for providing funding and research equipment.

References

Corey, P., J.K. Kim and D.J. Garbury, 2014 Growth and nutrient uptake by Palmaria palmate integrated with Atlantic halibut in a land-based aquaculture system. Algae, 29: 35-45

Food and Agriculture Organisation (FAO), 2010. World Review of Fisheries and Aquaculture. FAO Fisheries and Aquaculture Department, Food and Agriculture Organization of the United Nations, Rome, Italy

GESAMP, 2001. Protecting the Oceans from Land-based Activities - Land-based Sources and Activities Affecting the Quality and Uses of the Marine, Coastal and Associated Freshwater Environment. GESAMP Reports and Studies 71

Lazar, A., 2007. Growout Pond and Water Quality Management, JIFSAN Good Aquacultural Practices Program (joint institute for food safety & applied nutrition), University of Maryland, Symons Hall, College Park, Maryland, USA

UNEP and Gems Water Programme, 2006. Water Quality for Ecosystem and Human Health, Ontario, Canada

(Received 17 February 2015; Accepted 09 July 2015)