Management of Yellow Vein Mosaic Disease of Okra Through Pesticide/Bio-pesticide and Suitable Cultivars

SAFDAR ALI, M.A. KHAN, A. HABIB, S. RASHEED AND Y. IFTIKHAR
Department of Plant Pathology, University of Agriculture, Faisalabad–38040, Pakistan

ABSTRACT

Four okra cultivars (Pahuja, Safal, Subz Pari and Surkh Bhindi) were cultivated in a field trial to determine the response of these to okra yellow vein mosaic virus (OYVMV) and to evaluate the efficacy of pesticide/bio-pesticide (Neem extract, Effective Microbes (EM) and Imidacloprid) against insect vector Bemisia tabaci Genn. Surkh Bhindi was found highly resistant, Subz Pari and Safal were moderately resistant and Pahuja was tolerant against OYVMV. Among the pesticide/bio-pesticide applied, the imidacloprid significantly reduced the whitefly population. Neem extract and Biocntrol (EM) were also found to be effective against Bemisia tabaci compared to distilled water and untreated control.

Key Words: Okra; Pesticides; Bio-pesticide; Disease incidence; Bemisia tabaci

INTRODUCTION

Okra (Abelmoschus esculentus L) commonly known as ladyfinger is an important vegetable crop. Several species of genus Abelmoschus are grown in many parts of the world. However, in Pakistan Abelmoschus esculentus is most common and has great commercial demand due to its nutritional value. It is good source of vitamin A, B, C and also rich in protein, carbohydrates, fats, minerals, iron and iodine (Baloch et al., 1990; Norman, 1992).

Okra is cultivated for its immature pods to be consumed as fresh and canned food as well as for seed purpose. Its pods contain mucilaginous substances that thicken soups and stews. A number of fungi, bacteria, viruses, mycoplasma, nematodes and insects attack this crop. The total loss of vegetable on this account has been estimated up to 20-30% but if the pathogens are allowed to develop, this loss may increase up to 80-90% (Hamer & Thompson, 1957). The disease is characterized by a homogenous interwoven network of yellow vein enclosing islands of green tissues within its leaf. In extreme cases, infected leaves become yellowish or creamy color. If plants are infected within 20 days after germination, their growth is retarded; few leaves and fruits are formed and loss may be about 94%. The extent of damage declines with delay in infection of the plants. Plants infected 50 and 65 days after germination suffer a loss of 84 and 49%, respectively (Sastry & Singh, 1974).

The vector of okra yellow vein mosaic virus (OYVMV) is Bemisia tabaci Genn. Several attempts have been made to manage whitefly (Pun et al., 1999). The objective of this study was to evaluate different pesticides/bio-pesticides on suitable okra cultivars (commercially grown).

MATERIALS AND METHODS

Four okra varieties (Pahuja, Safal, Subz Pari and Surkh Bhindi) were sown in the research area of Department of Plant Pathology, University of Agriculture, Faisalabad during June 2002. Each variety was sown in three replications with 60 cm row to row and 20 cm plant to plant distance. The conventional agronomic practices were followed to keep the crop in good condition. The disease on each test entry was assessed by following self made disease rating scale (Table I).

Five treatments (T1= Neem extract; T2 = Biocontrol; T3 = Imidacloprid; T4 =Untreated control and T5 = Distilled water) each with three replications were sprayed against whitefly population at economic threshold level (4-5 whiteflies/leaf). Treatments were applied randomly on each block of a variety, thus designing the experiment according to randomized complete block design (RCBD). Pesticides were used with the following doses.

T1 = Neem extract @ 500 mL / acre
T2 = Biocontrol (EM) @ 1 L / acre
T3 = Imidacloprid @ 600 g /acre
T4 = Untreated control
T5 = Distilled water

The crop was sprayed by above-mentioned chemicals after 15, 30, 45 and 60 days of sowing. Data regarding OYVMV and whitefly population was recoded on weekly basis and subjected to statistical analysis. All possible interactions were determined through ANOVA and treatments mean were compared by LSD or DMR test at 5% level of probability (Steel et al., 1997).

RESULTS AND DISCUSSION

The response of four okra varieties against OYVMV was observed under natural conditions. Surkh Bhindi had...
great potential of resistance against OYVMV, only 3.3% plant infection was found on this variety (Table II). Subz Pari and Safal showed 12 and 24.40% plant infection, respectively. Pahuja showed 27.20% plant infection and graded as tolerant. Choudhary et al. (1992) has reported the incidence of yellow vein mosaic virus in okra. In case of hybrids disease incidence ranged from 19.26 to 69.13%; whereas, on parent plants, it ranged from 19.95 to 51.16%.

Three products, Neem (Azadirachta indica) extracts, Effective Microbes (EM) and Imidacloprid were evaluated for their efficacy in the control of Bemisia tabaci and OYVMV on okra. The crop sprayed with Neem extract suppressed the whitefly population (2 per leaf per plant) as compared to distilled water (2.60 per leaf per plant) and untreated control (3 per leaf per plant). The disease incidence (15.70%) on Neem extract treated crop was also lower in comparison to the distilled water (20%) and untreated control (25%). The whitefly population on plants sprayed with Biocontrol (EM) was 1.40 per leaf per plant, which was low as compared to Neem extract, distilled water and untreated control (Table III). Imidacloprid gave good results in controlling whitefly population and reducing disease incidence as compared to Biocontrol (EM) and Neem extract. Only one whitefly per leaf per plant was noted on the crop treated with Imidacloprid and 7.20% disease incidence was observed on this crop. Sarabani et al. (2002) has reported environmentally safe management of yellow vein mosaic disease of okra through the use of tolerant cultivars, cost effective scheduling of efficient insecticides, plant based, vector (Bemisia tabaci) control measures. Four sprays after 15, 30, 45 and 60 days of sowing produced highest yield. Spray application of plant products resulted in delaying disease occurrence up to 60 days. Kulat et al. (1997) conducted field trials during 1994-96, to determine the efficacy of six plant extracts and two insecticides for the control of whitefly (Bemisia tabaci) and Aphis gossypii on okra. Aqueous leaf extracts of tobacco (2%) Ipomoea cornea (5%) and a seed extract of Azadirachta indica and Pongamia bragla (5%) gave a similar level of control compared to Endosulfan (0.06%) and Monocrotophos (0.05%). Adiroubane and Letchoumanane (1998) conducted field experiments to evaluate the efficacy of three plant extracts, sacred basil (Ocimum sanctum), malbar nut (Adhatoda vesica), Chinese chaste tree (Vitex negudo) and synthetic insecticides (Endosulfan & Carbaryl) and their combinations products in controlling okra jassid, whitefly and fruit borers during rainy season in 1994 by spraying them at 10, 25 and 40 days after sowing. All the treatments suppressed insect’s population. Kumar et al. (2001) studied efficacy of imidacloprid and thiamethoxan on okra against leathopper and whitefly. Field experiments conducted in Bangl (India) during the kharif and summer seasons of 1999 and 2000 had shown that various doses of imidacloprid and thiamethoxan had no phytotoxic effect on okra but effective against insects. Sprays with leaf extracts of Prospos

<table>
<thead>
<tr>
<th>Serial No.</th>
<th>Cultivars</th>
<th>Mean of Severity rating</th>
<th>Level of resistance/susceptibility.</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Pahuja</td>
<td>27.20</td>
<td>Tolerant</td>
</tr>
<tr>
<td>2</td>
<td>Safal</td>
<td>24.40</td>
<td>Moderately resistant</td>
</tr>
<tr>
<td>3</td>
<td>Subz Pari</td>
<td>12.50</td>
<td>Moderately resistant</td>
</tr>
<tr>
<td>4</td>
<td>Surkh Bhindi</td>
<td>3.36</td>
<td>Highly resistant</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Treatments</th>
<th>Disease incidence %</th>
<th>No. of whitefly/leaf/plant</th>
</tr>
</thead>
<tbody>
<tr>
<td>Neem extract</td>
<td>15.70</td>
<td>2.00</td>
</tr>
<tr>
<td>Bio control (EM)</td>
<td>12.50</td>
<td>1.40</td>
</tr>
<tr>
<td>Imidacloprid</td>
<td>7.20</td>
<td>1.00</td>
</tr>
<tr>
<td>Untreated</td>
<td>25.00</td>
<td>3.00</td>
</tr>
<tr>
<td>Distilled water</td>
<td>20.00</td>
<td>2.60</td>
</tr>
<tr>
<td>Mean</td>
<td>16.08±12</td>
<td>5.00±25</td>
</tr>
</tbody>
</table>

Table I. Disease rating scale used in study

Table II. Response of okra varieties to yellow vein mosaic virus (YVMV) under natural conditions

Table III. Effect of treatments on plant infection and whitefly population on okra cultivars

chilensis and Bougainvillea spectabilis has been found highly effective in reducing yellow vein mosaic virus in okra. The incubation period of the virus in plants treated with leaf extracts of Prospos chilensis and Bougainvillea spectabilis increased to 19.1 days and 19.3 days respectively, compared with 10.4 days in control plants (Pun et al., 1999).

CONCLUSION

The easiest and cheapest method of reducing yellow vein mosaic disease of okra is cultivation of resistant varieties against this disease as Surkh Bhindi and Subz Pari. Moreover four applications of different insecticides like imidacloprid, effective microbes (EM) or neem extract at 15 days interval starting two weeks after germination also reduced the spread of OYVMV by checking its vector Bemisia tabaci.

REFERENCES


(Received 10 October 2004; Accepted 20 November 2004)