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ABSTRACT 
 
Eighteen fungal species belonging to 12 genera were isolated from 15 tomato plant samples (Lycopersicon esculantum Mill.) 
collected from Qena Governorate in Upper Egypt. The most prevalent genera were Aspergillus, Alternaria, Mucor, and  
Cladosporium. From these genera,  Aspergillus niger, Alternaria solani, Mucor heimales and Cladosporium herbarum were 
the most common species. Trichoderma viride and Pythium intermedium were of moderate and remaining species were 
recovered in low prevalence. Pathogenesity of different isolates of Alternaria solani was determined in vitro and the highest 
virulent isolate was used in the subsequent physiological studies. The effect of salicylic acid and heat shock on some 
physiological responses of tomato plants infected with the virulent isolate Alternaria solani was determined. Tomato plants 
infected with A. solani displayed lower values of fresh and dry weights, and pigment contents than the uninfected plants. 
While, fungal infection enhanced the contents of soluble protein, total free amino acids and proline. Treatment of infected 
tomato plants with 10-6 M salicylic acid enabled plants to tolerate stress due to fungus by increasing the contents of pigments, 
soluble protein and proline. Therefore, salicylic acid is involved in regulation of resistance against A. solani. When tomato 
plants exposed to heat shock at 40ºC for ½ h, counteracted the adverse effect of fungus on growth parameters which were 
accompanied by enhanced biosynthesis of pigments, total free amino acids and proline, where the accumulation of free amino 
acids and proline seems to be on the expense of induced heat shock to soluble proteins. 
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INTRODUCTION 
 

Mould contamination can occur on a crop during 
development, harvest, storing, terminal shipment and 
processing. Many investigations have been reported on 
mycoflora (El-kady et al., 1979; Saber et al., 1994; Abdel-
Mallek et al., 1995; Perveen & Ghaffar, 1995) and 
pathogenic fungi on tomato plants (Jones et al., 1991; 
Oladiran & Iwu, 1993; Lawrence et al., 1996). In Egypt, 
Saber et al. (1994) identified 22 species contributed to 7 
genera from 21 tomato paste samples. They found that 
Aspergillus fumigatus, A. flavus, A. niger and Penicillium 
oxalicum were predominant on glucose-Czapek’s agar 
medium. While, Aspergillus niger, A. flavus, A. sydowii and 
Eurotium montevidensis were the most common species on 
10% NaCl glucose-Czapek’s agar medium. Perveen & 
Ghaffar (1995) isolated 37 species of fungi belonging to 20 
genera from 24 samples of tomato seeds collected from 
different parts of Pakistan. The most common fungi were 
Fusarium solani, F. moniliforme, Aspergillus flavus, 
Alternaria alternata and Drechslera australiensis were 
predominant. The occurrence and distribution of fungal 
flora on different plant species were also studied in Upper 
Egypt (Moubasher et al., 1972; Abdel-Hafez et al., 1996; 
Mohawed et al., 2001; Abdel-Sater & Eraky, 2002). 

Being non-motile, tomato plants are often exploited as 
a source of food and shelter by a wide range of parasite 

including viruses, bacteria, fungi, nematodes, insects and 
even other plants. However, they have developed 
remarkable strategies to adapt to environmental changes by 
using a range of constitutive or inducible biochemical and 
molecular mechanisms. They exhibit both long- and short- 
term defense responses to immediate challenges such a 
pathogen attacks. Nevertheless, a synergic effect of  many 
stresses represents the primary cause of crop loss. The 
estimated loss caused by pathogens is typically around 10 to 
20% (Boyer, 1982; Scheel, 1998; Nimchuk et al., 2001). 

Plants have evolved complex, integrated defense 
mechanisms against disease that include performed physical 
and chemical barriers, as well as inducible defenses such as 
the production of anti-microbial compounds, enhanced 
strengthening of cell walls and the production of various 
antifungal proteins (Lamb et al., 1989; Jackson & Taylor, 
1996). These systems form an effective defense against 
infection, with disease resulting as a rare outcome in the 
spectrum of plant-microbe interactions. Infectious disease 
can result when a pathogen is able to overcome the defense 
processes of a host plant by either actively suppressing or 
out competing them. 

Adverse factors can be either biotic or abiotic factors 
include bacteria, fungi, insects, or disease-causing 
organisms. They elicit changes in host genetic expression so 
that stress-specific compounds are synthesized to enhance 
host resistance to the foreign organism. Abiotic factors 
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include temperature, excess water (Ben-Zioni et al., 1967; 
Hsiao, 1970), salinity (Ben-Zioni et al., 1967), heavy metals 
(Jackson et al., 1984; Curle & Kapoor, 1988; Gruhn & 
Miller, 1991), growth regulator (Heikkila et al., 1984), 
ultraviolet irradiation (Chappell & Hahlbrock, 1984), 
Famine (Curle & Kapoor, 1988), pH (Le John & 
Braithwaite, 1984). Among the environmental stressors 
listed above, thermal stress has been most widely studies. 
Both heat shock and cold shock can induce the synthesis or 
storage of a group of proteins which increase resistance to 
thermal to thermal stress (Ketola-Pirie & Atkinson, 1983; 
Yacoob & Filion, 1987). 

The plant hormones salicylic acid (SA), Jasmonic acid 
(JA), and ethylene (ET) play key roles in the regulation of 
defense, because plant genotypes that are affected in their 
response to any these signals are more susceptible to 
infection by certain virulent pathogens (Hutcheson, 1998; 
Daugl & Jones, 2001; Lan et al., 2001). Salicylic acid (SA) 
plays a central role in the signaling pathways involved in 
systemic acquired resistance (SAR) (Vernooij, 1994; Dong, 
1998). 

Plant respond to temperature changes through several 
mechanisms such as synthesis of heat and cold shock 
protein (Howarth & Skot, 1994; Gimalov et al., 1996; 
Sabehat et al., 1996), and amino acids (Chapin, 1991; 
Santarius, 1992). According to Delauney and Verma (1993), 
Arora and Saradhi (1995), Hare et al. (1998), Fabro et al. 
(2004), Souza et al. (2004) proline accumulation in plant 
tissues may increase the plant tolerance to several stress, 
such as biotic or abiotic stress. 

During the last 20 years this substance drew the 
attention of researchers due to its ability to induce systemic 
acquired resistance (SAR) in plant to different pathogens, 
which is manifested in the appearance of pathogenesis 
related proteins (PR). (Pieterse et al., 1998), suggesting that 
the basal resistance pathogen is controlled by action of SA 
In addition proline accumulation was faster and stronger 
when stimulated by adding low concentration of salicylic 
acid to plants (Fabro et al., 2004). 

Heat-shock response of microorganisms has been 
observed by various investigators (Linton et al., 1992). They 
indicated that microorganisms after exposing to a few 
degree centigrade above their growth temperature might 
increase their resistance to heat treatment or other stress that 
were normaly letheal to them however it is reported that a 
number of factores including growth phase preincubation 
temperature, pH and heating medium may influence the 
extent of heat-shook response of micoorganismes (Macky & 
Derrick, 1990). 

The present investigation was aimed to study the 
occurrence of tomato mycoflora and the effect of heat shock 
and salicylic acid on biochemical parameters of tomato 
infected with Alternaria solani.  
 
 
 

MATERIALS AND METHODS 
 
Tomato mycoflora. Fifteen tomato (Lycopersicon 
esculentum Mill.) plant samples were collected from Qeft, 
Qus, Naga-Hamady, Deshna and Qena at Qena 
Governorate, Upper Egypt. These tomato samples were 
collected at the end of February 2003 from the cultivated 
fields and brought to the laboratory in clean plastic bags. 
Tomato leaves from each plant sample were cut into small 
segments (1 cm) and four segments from each plant sample 
were cultured on sterile GCA medium in each Petri-dish 
(Moubasher et al., 1972). Four replicates were used for each 
plant sample and the dishes were incubated at 24ºC for one 
week. Then, the colonies of fungi which developed around 
the samples were examined and identified according to 
Moubasher (1993), Nelson et al. (1983), Lawrence (1989), 
Zycha (1963), Domsch and Gams (1972). The identified 
fungi were purified on GCA medium, maintained on slopes 
of the same medium and stored at 8-12ºC. 
Pathogen and infection. Alternaria solani (Ell. and Mart.) 
is the causal agent of early blight in tomato. Nine isolates of 
A. solani were recovered from nine tomato samples (Table 
I). The pathogenicity of these isolates were examined in 
tomato cv. Peto-86 (Lycopersion esculentum Mill.) as 
described by Thanutong et al. (1983) and Khan (2002). The 
isolates were cultured on Glucose Czapek,s agar medium 
(GCA) and incubated in the dark at 24ºC. For inoculation 
and disease assessment, tomato seeds were surface-sterilized 
by soaking in 5% sodium hypochlorite solution for 2 
minutes and then washed thoroughly in a sterile water. The 
sterilized seeds were cultured in aseptic closed 125 ml 
bottles (for high humidity), each bottle contains 25 ml of  ¼ 
MS-medium (Murashige & Skoog, 1962) and incubated 
under semi-controlled conditions in the green house for 4 
weeks. Four week old plants were sprayed uniformly with 
spore suspension (106 ml-1) from each isolate and 
maintained at 25ºC under continuous light for one week. 
After two weeks of inoculation, percentage of diseased 
plants was determined for each isolate of A. solani. The 
pathogenic isolates of A. solani were re-isolated from the 
infected tissues and kept in pure cultures. 
Physiological studies. The effect of salicylic acid and heat 
shock on some physiological characters of tomato plants 
infected with the virulent isolate (No.5) of A. solani was 
investigated. Tomato seeds of cultivar Peto-86 were surface 
sterilized with sodium hypochlorite solution (5 %) and 
grown aseptically in 125 ml bottles containing 25 ml of ¼ 
MS medium (Murashige & Skoog, 1962) free of growth 
hormones. Fifteen sterile seeds were grown in each bottle 
and maintained in controlled environment cabinet at 25±10C 
with 12 hr light period. 
Treatments. After four weeks of incubation, 30 bottles with 
healthy grown plants were inoculated with the pathogenic 
isolate of A. solani. Additional 10 bottles remain without 
inoculation (control). The cultures were incubated for 10 
days at 250C. Afterwards, inoculated bottles were divided 
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into 3 groups. The first group exposed to 400C for 1/2 hr 
while each bottle in the second group was supplied with 1.0 
ml of sterile 10-6 M salicylic acid and third group of 
inoculated bottles was without additional treatments. All 
bottles were incubated at 25 0C for one more weak. 

At the end of experiment, fresh and dry weights as 
well metabolic changes including the photosynthetic 
pigments (chlorophyll a, b and carotenoids; Metzner et al., 
1965), free proline (Bates et al., 1973), soluble proteins and 
total free amino acid were determined. Soluble proteins 
were determined according to the Bradford dye binding 
method (Bradford, 1976) using bovine serum albumin as a 
standard, and total free amino acids were analyzed 
according to Moore and Stein (1948) using L-Lysine as a 
standard. 
 
RESULTS AND DISCUSSION 
 
Mycoflora of tomato. Eighteen fungal species belonging to 
12 genera were isolated from fifteen tomato plant samples 
collected from Qena Governorate. The most prevalent 
genera were Aspergillus, Alternaria, Mucor, and  
Cladosporium. In Egypt, Saber et al. (1994) identified 22 
species contributed to 7 genera from 21 tomato paste 
samples. However, Perveen and Ghaffar (1995) isolated 37 
species of fungi belonging to 20 genera from 24 samples of 
tomato seeds collected from different parts of Pakistan. 

Aspergillus species was the most common genus and 
occurred in all tested samples constituting 19.9% of total 
fungal counts. It was represented by four species of which 
Aspergillus niger was the most prevalent (12 samples, 15% 
of the total counts). The other species were of low 

occurrence and namely, A. ustus (2 samples, 0.73% of the 
total counts), A. terrus (2 samples, 0.48% of total counts) 
and A. flavus (3samples, 1.21% of the total counts). 
Likewise, El-kady et al. (1979) isolated Aspergillus flavus, 
A. flavus var. columnaris and A. niger from tomato paste. 
Similarly, Saber et al. (1994) isolated 9 species of 
Aspergillus from tomato paste samples including A. flavus, 
A. niger and A. terrus. Abdel-Mallek et al. (1995) isolated 
Aspergillus niger from 84.6% of the tested healthy tomato 
fruits. However, Perveen and Ghaffar (1995) found that 
Aspergillus flavus was the most common species of 
Aspergillus in tomato seeds. 

Alternaria solani come after Aspergillus and 
represented by high occurrence (9 samples, 19.7% of the 
total counts). Mucor heimales was the third genus and 
represented by high occurrence (9 samples, 10.4% of the 
total counts). Cladosporium herbarum was also represented 
by high occurrence which appeared in 9 samples 
constituting 8.98% of the total counts of fungi. 

Species from the genus Penicillium were isolated from 
6 samples constituting 12.14% of the total counts. It was 
represented by three species namely; Penicillium citrinum 
(3 samples, 2.91% of the total counts), P. rubrum (3 
samples, 8% of the total counts) and P. notatum (3 

Table I. Fungal species were isolated from 15 samples of tomato plants collected from different fields in Qena 
Governorate, Upper Egypt 
 

Qeft Qus Qena  Naga- Hamady Deshna Fungal Species 
1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 

TC TC 
% 

OR 

Aspergillus 2 9 2 16 10 1 5 5 2 8 5 3 7 2 2 82 19.9 H 
A. ustus(Bainier)Thom et Church          3      3 0.73 L 
A.flavus (Link)          3   2   5 1.21 L 
A.niger (van Tieghem) 2 9 2 14 3 1 5 5 2 2 5 3 5 2 2 62 15.0 H 
A.terrus (Thom)    2            2 .48 L 
Alternaria solani (Ellis et Martin)     7   14 4 6 14 6 16 2 2 81 19.7 H 
Cladosporium herbarum (Link)Fries  3 3    6 4  6   4 7 5 37 8.98 H 
Curvularia lunata (Wakker) Boedijn      20          20 4.85 L 
Helminthosporium sativum (Pammel et al.)     3 14       18   35 8.49 L 
Mucor hiemalis (Wehmer) 4 6 10 4 4  4 3 4  4     43 10.4 H 
Paecilomyces variotii (Bainier)          3  4  2  9 2.18 L 
Penicillium rubrum (Stoll)    8   12  3       33 8.0 L 
Penicillium notatum (Westling)    2    1 2       5 1.21 L 
Penicllium citrinum (Thom) 5  3     4        12 2.91 L 
Pythium intermedium (de Bary)   2   1    3   3   9 2.18 M 
Pyth. Aphanidermatum (Edson)Fitzpatrick)      3       3   6 1.45 L 
Rhizopus nigricans (Ehrenberg)         3 19   4   26 6.31 L 
Trichoderma viride (Persoon;fries)   3       6  4 3   16 3.88 M 
Torula herbarum (Persoon)Link     3     2   3   8 1.94 L 
High occurrence: 8 - 15 
Moderate occurrence: 4-7 
Low occurrence: 1-3. 

Table II. Pathogenicity test of nine isolates of A. solani 
on tomato cv. Peto-86 
 

Isolates of A. solani  
1 2 3 4 5 6 7 8 9 

No. of treated plants 22 20 18 18 22 20 20 24 25 
No. of diseased plants 0 1 0 0 4 0 2 0 0 
% of diseased plants 0.0 5.0 0.0 0.0 18.2 0.0 10.0 0.0 0.0 
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samples,1.21% of the total counts). Pythium was of 
moderate occurrence which isolated from 4 samples 
representing 3.64% of the total fungal counts. It was 
represented by two species namely; Pythium intermedium (4 
samples, 2.18% of the total counts) and P. aphanidermatum 
(2 samples, 1.45% of the total counts). Trichoderma was 
also of moderate occurrence (4 samples, 3.88% of the total 
counts) and represented by one species, Trichoderma viride 
only. All of these species were isolated previously, but with 
variable densities and frequencies, from tomato (El-kady et 
al., 1979; Saber et al., 1994; Perveen & Ghaffar, 1995) and 
other plant species (Abdel-Hafez et al., 1996; Mohawed et 
al., 2001; Abdel-Sater & Eraky, 2002). Saber et al. (1994) 
isolated 4 species of Penicillium and one species of 
Trichoderma from tomato paste samples including P. 
citrinum and T. viridi. 

The remaining genera and species of fungi were of 
low occurrence; Helminthosporium sativum (3 samples, 
8.49% total counts), Paecilomyces variotii (3; 2.18%), 
Rhizopus nigricans (3; 6.31%), Torula herbarum (3; 1.94%) 
and Curvularia lunata (1; 4.85%). These species were 
isolated previously from different plant species, but with 
variable frequencies (Abdel-Hafez et al., 1996; Mohawed et 
al., 2001; Abdel-Sater & Eraky, 2002). 
Pathogenicity of Alternaria solani isolates. In the present 
investigation, 9 isolates of A. solani were recovered from 
nine tomato samples. The pathogenicity of these isolates as 
causal agents to early blight in tomato cv. Peto-86 was 
tested and summarized in (Table II). The results showed that 
the isolate No.5 was the most highly virulent followed by 
No.7 and No.2. Meanwhile, plants inoculated with the other 
isolates didn’t show any symptoms of early blight disease 
which reflect that these isolates were non-pathogenic. 
Similarly, Khan (2002) studied the resistance of two tomato 
species to five isolates of A. solani. He found that the five 
isolates of A. solani were non-pathogenic against the tested 
tomato species. 
Physiological studies. Tomato seedlings infected with A. 
solani (isolate No.5) showed significant decreased in their 
fresh and dry weights than the controls treated with or 
without salicylic acid or heat shock (Fig. 1), the infected 
seedlings under heat shock displayed an increase in the 
growth parameters as compared with their respective 
control. Infected tomato seedlings also showed highly 
significant decrease in the contents of chl. a, chl. b, 
cartenoides and consequently total pigments as compared to 
the control (Fig. 2). While, this decrease was not 
pronounced when infected tomato plants exposed to the heat 
shock or in case of adding salicylic acid to sterile nutrition 
medium. 

The observed pronounced decrease in growth and 
pigments, at the infected tomato seedlings lends support to 
the results obtained in other reports (Boyer, 1982; Fricke & 
Peters, 2002). De La Rosa-Ibarca and Maiti (1995) 
suggested that the tender decrease of chlorophyll content 
might be due to the synthesis of nitrogen compounds. This 

suggestion is in agreement with the results obtained here, 
which showed that the decrease in the content of pigments 
was accompanied by increase of protein, total free amino 
acids and proline content. 

In an attempt by heat shock especially and salicylic 
acid reduced the fungus stress- induced loss in chl a, chl b 
and carotenoid contents and promoting the growth probably 
by increasing the rate of photosynthetic electron transport 
above the control level and increased the photochemical 
activity of leaves (Tari et al., 2002). Moreover, salicylic acid 
increased H2O2 derived from the reactive oxygen species 
produced during abiotic stress (Yalpani et al., 1994). 

The accumulation of proline seemed faster and 
stronger under fungal stress (Fig. 5). Rhodes et al. (1986), 
Delauney and Verma (1993) found that proline 

Fig. 1. Effect of fungal infection, heat shock (40 0C 
for ½ hr.) and salicylic acid ( 10-6   M. ) on fresh and 
dry weights ( g/plant ) of tomato plants 
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Fig. 2. Effect of fungal infection, heat shock (400C for 
½ hr.) and salicylic acid (10-6 M.) on pigment contents 
(mg/g fresh weight) of tomato plants 
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accumulation is thought to function as a compatible 
osmolyte that stabilizes membranes and subcellular 
components, including the mitochondrial electron transport 

complex II (Humilton & Heckathor, 2001). In addition, 
proline is proposed to scavenge free radicals (Smirnoff & 
Cumbes, 1989; Saradhi et al., 1995; Siripornadulsil et al., 
2002) and to ameliorate shifts in redox potential by 
replenishment of the NADP+supply (Delauney & Verma, 
1993; Hare & Gress, 1997). Cross-talk, between aboitic and 
biotic defense programs have been suggested (Genoud & 
Metraux, 1999; Singh et al., 2002). In addition, proline 
accumulation seems to be greater when stimulated by 
applying low concentration of salicylic acid on tomato 
plants. This conclusion is in agreement with other studies, 
which documented the importance of salicylic acid in 
pathogen-induced disease resistance and hypersensitive cell 
death (Gaffiney et al., 1993; Delaney et al., 1994; Avarez, 
2000; Fabro et al., 2004). Through the potentiation of 
oxidative burst, salicylic acid can control both biotic and 
abiotic defense programs (Shirasu et al., 1997; Borsani et 
al., 2001). 

The accumulation of proline seems to be at the 
expense of other free amino acid (Fig. 4). This conclusion is 
in agreement with other studies (Abdel-Samed, 1991; 
Hamada & Khulaff, 1995), who found that the accumulation 
of amino acids was nearly opposite to that of proline. 

The increase of soluble protein under the effect of 
fungus stress was the similar by adding salicylic acid, as 
was previously recorded (Fig. 5). Van Loon (1997) found 
that, the protein related pathogen form a set of pathogen-
induced proteins that may be considered as stress proteins. 
When salicylic acid added to sterile medium nutrition 
inoculated by fungus, the increase soluble protein contents 
thus increase agreement by Van Loon and Antoniw (1982), 
Van Loon (1997) they observed that exogenous by applied 
salicylic acids induces both acquired resistance and protein 
related resistance in e. g. tobacc, tomato and Arabidopsis 
and when salicylic acid was watered on the soil, aquired 
resistance was apparent in upper leaves indicating that 
salicylic was absorbed by the roots and transported throught 
the plant when the tomato plants exposed to heat shock, 
after infected by fungus, the soluble protein content changed 
in comparison with control (Fig. 5). This may be due to a 
promotion in the conversion of other amino acids and 
proline seems to be on the expense of the soluble proteins. 
This conclusion is in agreement with other studies (Howarth 
& skot, 1994; Gimalor et al., 1996; Sabehat et al., 1996) 
indicating that plant responded to temperature changes 
through several mechanisms such as synthesis of heat and 
cold shock proteins (Chapin, 1991) and free proline 
accumulation (Hare et al., 1998) in plant tissues may 
increase the plant tolerance to several stresses. 
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Fig. 4. Effect of fungal infection, heat shock (40 0C 
for ½ hr.) and salicylic acid (10-6  M) on the total free 
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Fig. 5. Effect of fungal infection, heat shock (40 0C 
for ½ hr.) and salicylic acid (10-6 M) on the proline 
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