Brackish Water for Irrigation: II Effects on Yield of Wheat and Properties of the Bhalwal Soil Series

MUHAMMAD ABID, ANWAR-UL-HASSAN†, ABDUL GHAFOOR AND RANA ABDUL WAJID‡ University College of Agriculture, Bahauddin Zakariya University, Multan—Pakistan†Department of Soil Science, University of Agriculture, Faisalabad—38040, Pakistan‡Department of Statistics, Bahauddin Zakariya University, Multan—Pakistan

ABSTRACT

The salt built up with EC_{iw} , SAR_{iw} and/or RSC and their subsequent detrimental effects on chemical and physical properties of the Bhalwal soil series and yield of wheat cv. Faisalabad-85 were studied. Irrigation waters of 15 qualities were applied to 30 cm x 68 cm undisturbed and disturbed soil columns. Grain yield decreased linearly with EC_{iw} at given levels of SAR_{iw} and RSC. The SAR_{iw} up to 18.0 at coded "0" levels of EC_{iw} and SAR_{iw} (4.0 dS m⁻¹ and 4.0 mmol_c L⁻¹) did not affect the yield in both the undisturbed and disturbed soil columns. Yield increased with RSC waters up to 2.0 and 4.0 mmol_c L⁻¹ at levels of EC_{iw} up to 4.0 dS m⁻¹ and SAR_{iw} up to 18.0 in the undisturbed and disturbed soils, respectively. Overall, the adverse effect of EC_{iw} , SAR_{iw} and RSC was more on wheat grain yield under undisturbed than that under the disturbed soil columns. Higher grain yield with similar EC_{iw} , SAR_{iw} and RSC were recorded from disturbed than that of the undisturbed soil columns. The soil EC and EC

Key Words: Brackish water; Saturated HC; BD; Wheat; SAR; EC

INTRODUCTION

Unscientific uses of brackish waters reduce the value and productivity of soils. Accumulation of soluble salts in the soils imposes stress on crops leading to decreased yields (Francois *et al.*, 1986), and that of sodium (soluble & adsorbed) affects soil physical properties, which in turn greatly affect crop production (Shainberg & Letey, 1984).

The data regarding the long-term effect of brackish water on soils and crops is insufficient since mostly research has been focused on minimizing salt build up in soils. In the past, greenhouse and/or laboratory experiments disturbed soil columns have been used. Information regarding undisturbed soil is lacking. Limited number of combinations of EC_{iw}, SAR_{iw} and/or RSC levels were investigated. Thus the objective of the present study was to evaluate the long-term effects of using various combinations of EC_{iw}, SAR_{iw} and RSC on soil salination, sodication, bulk density, saturated hydraulic conductivity and yield of wheat grown under undisturbed and disturbed columns of the Bhalwal (silty clay loam) soil series. The results will help successful planning of ground water development and future salinity related programme for crop production.

MATERIALS AND METHODS

Research work was conducted in wire-house at University of Agriculture, Faisalabad during 1991-95 using Bhalwal soil series (Fine-silty, mixed, hyperthermic Ustollic Calciargids). This soil was sandy clay loam in texture (sand 35%; silt 50%; clay 15%) and has pH_s 7.7; EC_e 2.2 dS m⁻¹; SAR 3.3 (mmol L⁻¹) $^{1/2}$; CaCO₃ 6.8% and CEC 10.4 cmol_c kg⁻¹.

Columns preparation. Metallic cylinders (76-cm long and 30-cm diameter) were pushed vertically into the moist soil (≈ 50 % field capacity) by dropping a 20 kg weight on the grooved wooden planks through a pulley up to 68 cm depth, soil around the cylinder was excavated up to 80 cm and soil columns were removed. This excavated soil was used for preparing disturbed soil columns. A thin layer of glass wool and sand on stainless steel wire gauze (35 cm x 35 cm) was placed to minimize the movement of finer particles in the leachate at the bottom of cylinders and were placed on metallic funnels, fixed on iron stands.

For the preparation of disturbed soil columns, a thin layer of glass wool and sand were spreaded on the stainless steel wire gauze before attaching it with the cylinder. These cylinders were placed on metallic funnels and fixed on leveled iron stands. The cylinders were filled with air-dried, ground, passed through a 2 mm sieve soil of the Bhalwal series. The soil filling up to 68 cm was accomplished by adding small increments through a plastic funnel attached to a plastic pipe, and gently tapping the sides of the column followed by settling of soil with canal water.

Irrigation water quality. Fourteen design points having different EC_{iw}, SAR_{iw} and RSC levels were selected following Central Composite Rotatable Second Order Design (Montgomery, 1997). Five levels each of EC_{iw} (X₁),

Table I. Design matrix and treatment combinations used during experiments

Coded scale			Original level				
X ₁	X ₂ X ₃		EC _{iw} (dS m ⁻¹)	SAR _{iw} (mmol L ⁻¹) ^{1/2}	RSC 1)1/2 (mmol _c L ⁻¹)		
-1	-1	-1	2.00	9.65	2.00		
1	-1	-1	6.00	26.35	2.00		
-1	1	-1	2.00	9.65	2.00		
1	1	-1	6.00	26.35	2.00		
-1	-1	1	2.00	9.65	6.00		
1	-1	1	6.00	26.35	6.00		
-1	1	1	2.00	9.65	6.00		
1	1	1	6.00	26.35	6.00		
-1.682	0	0	0.65	18.00	4.00		
1.682	0	0	7.35	18.00	4.00		
0	-1.682	0	4.00	3.95	4.00		
0	1.682	0	4.00	32.04	4.00		
0	0	-1.682	4.00	18.00	0.65		
0	0	1.682	4.00	18.00	7.35		
0	0	0	4.00	18.00	4.00		
0	0	0	4.00	18.00	4.00		
0	0	0	4.00	18.00	4.00		
0	0	0	4.00	18.00	4.00		
0	0	0	4.00	18.00	4.00		
0	0	0	4.00	18.00	4.00		

Table II. Five extra treatment combinations used to test the model validity

С	oded sca	ıle	Original level				
\mathbf{x}_1	X ₂	X ₃	EC _{iw} (dS m ⁻¹)	SAR _{iw} (mmol L ⁻¹) ^{1/2}	RSC (mmol _c L ⁻¹)		
-1	0	-1.682	2.00	18.00	0.65		
0	0	-1	4.00	18.00	2.00		
0	1	0	4.00	26.35	4.00		
1	1	1.682	6.00	26.35	7.35		
1.682	1	-1.682	7.35	26.35	0.65		

 $x_1 = (X_1 - 4.00)/2.0$; $x_1 = (X_2 - 18.00)/8.35$; $x_3 = (X_3 - 4.00)/2.0$

SAR_{iw} (X_2) and RSC (X_3) were 0.65, 2.00, 4.00, 6.00 and 7.35 dS m⁻¹, 3.95, 9.65, 18.00, 26.35 and 32.04 (mmol L⁻¹)^{1/2}, and 0.65, 2.00, 4.00, 6.00 and 7.35 mmol_c L⁻¹, respectively. The levels were coded as -1.682, -1, 0, 1 and 1.682, respectively for each variable (Table I). The central point (all variables at coded zero levels) was repeated six times, so that a uniform precision design could be attained. In a uniform precision design, variance of \hat{y} at the origin is equal to the variance of \hat{y} at unit distance from its origin. This design gives much more protection against

bias in the regression analysis (Montgomery, 1997).

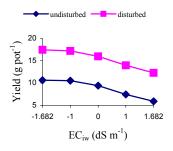
To verify the validity of these model predictions with factors of Table I, five extra treatments (Table II) for wheat were run in disturbed columns of Bhalwal soil series. After getting near-steady state, assessed on the basis of EC_{dw} (EC of drainage water) wheat was grown in these lysimeters.

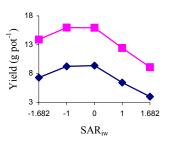
Brackish water preparation, application and steady-state soil conditions. The desired levels of EC_{iw} , SAR_{iw} and RSC (Table I) were prepared by dissolving calculated amounts of NaCl, NaHCO₃, Na₂SO₄, CaCl₂ and MgSO₄ salts in canal water. After each irrigation, drainage water (dw) for each lysimeter was measured and analyzed occasionally for EC_{dw} to monitor the progress towards steady-state. Application of brackish water was started on March 14, 1992 and the near steady-state soil conditions were achieved on April 14, 1993. Total 42 L water was added to each column of the undisturbed and disturbed soils, respectively.

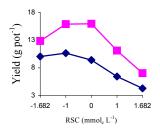
Crops. Wheat (*Triticum aestivum* L.) cv. Faisalabad-85 was sown on December 14, 1992 and December 15, 1993. A basal dose of N, P and K were applied @ 150, 100 and 75 kg ha⁻¹, respectively to all the soil columns as urea, single super phosphate and sulphate of potash. During growth period, crop was sprayed with Novacron to protect it from insect pest attack. Brackish waters (Table II) were applied through out the growth period of the crop according to crop requirement. The crops were harvested on May 3, 1993 and May 6, 1994.

After termination of the experiment, saturated hydraulic conductivity (K_s) with falling head method (Jury *et al.*, 1991) and bulk density by core method (Blake & Hartge, 1986) were determined. Soil samples from 0-15, 15-30, 30-45 and 45-60 cm were drawn from soil columns and were analysed for EC_e, SAR and pH_s (U.S. Salinity Lab. Staff, 1954).

Data analysis. The coefficients (Table III) were determined using multiple regression analysis using Minitab software programme (Minitab, 1989). To draw quadratic graph for all the dependent variables, form of the model used was:

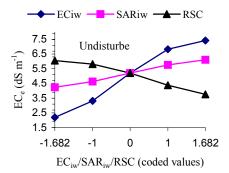

$$\log \hat{y}_i = \beta_0 + \beta_I x_i + \beta_{ii} x_i^2$$


RESULTS AND DISCUSSION


Grain yield of wheat. A constant decrease in wheat yield resulted with an increase in EC_{iw} at coded "0" levels of both the SAR_{iw} and RSC (Fig. 1), yield reduction being more in undisturbed than that in disturbed soil columns. About 50% yield was decrease with EC_{iw} 7.35 dS m⁻¹ over EC_{iw} 0.65 dS m⁻¹ at coded "0" levels of SAR_{iw} and RSC (18.0 and 4.0 mmol₂ L⁻¹) in the undisturbed soil columns.

Wheat yield increased with SAR_{iw} up to 18.0 at coded "0" levels of EC_{iw} and RSC, thereafter it decreased in both the soil conditions (Fig. 1). Decrease in yield was more with SAR_{iw} from disturbed than that from the undisturbed soil

Fig. 1. Effect of ECiw, SARiw and RSC on yield of wheat



columns at coded "0" levels of EC_{iw} and RSC. Wheat grain yield was more with similar SAR_{iw} at all the five coded levels of EC_{iw} and RSC from the disturbed than that from the undisturbed soil conditions. Reduction in yield was more conspicuous with SAR_{iw} at higher coded levels EC_{iw} and RSC (Table III).

Grain yield increased with RSC up to 2.0 mmol_c L⁻¹ at coded "0" levels of EC_{iw} and SAR_{iw}, remained almost constant up to 4.0 mmol_c L⁻¹ and then decreased in disturbed soil columns (Fig. 1). Contrary to this, yield increased up to RSC 2.0 mmol_c L⁻¹, thereafter it decreased with further increase in RSC up to 7.35 mmol_c L⁻¹ in the undisturbed soil. At similar RSC of waters, reduction in yield was more at higher than that lower levels of EC_{iw} and SAR_{iw}, which could be due to adverse effect of HCO₃⁻ in applied irrigation water (Muhammed & Rauf, 1983).

In general, wheat grain yield decreased with EC_{iw} , SAR_{iw} and/or RSC, magnitude of which was different for undisturbed and disturbed soil columns. Reduction in yield was more with EC_{iw} at $SAR_{iw} \geq 18.0$ and/or RSC ≥ 4.0 mmol $_c$ L^{-1} than that at lower SAR_{iw} and RSC. Higher wheat grain yield was noted at a given EC_{iw} from the disturbed than that from the undisturbed conditions (Fig. 1). The EC_e and SAR values with EC_{iw} were less in disturbed than that of the undisturbed soil columns. It is apparent from results that more reduction in yield was probably due to high EC_e and/or restricted internal drainage conditions of the undisturbed soil columns (Fig. 1). The high EC_e reduce in

Fig.2. Effect of ECiw, SARiw and RSC on ECe of soil

physiological availability of water but promoted accumulation of toxic ions (e.g. Na⁺ and Cl⁻) in plants (Greenway & Munns, 1980).

Wheat yield increased with SAR_{iw} up to 9.65, remained similar with SAR_{iw} up to 18.0 and decreased with further increase in SAR_{iw} from both the undisturbed and disturbed soil columns. Reduction in yield was more with SAR_{iw} for the undisturbed than that for disturbed soil columns at all the five levels of EC_{iw} and RSC. The adverse effect of SAR_{iw} was more on yield at higher EC_{iw} and RSC than that at lower EC_{iw} and RSC. A decrease in yield may be due to accumulation of exchangeable Na^+ (Khandewal & Lal, 1991) which might have increased mechanical impedance to root penetration due to poor soil structure or directly Na^+ toxicity to wheat plant.

Yield increased with RSC of waters up to 2.0 mmol_c L⁻¹ and decreased with further increase in RSC from the undisturbed soil columns and from disturbed soil columns, yield increased with RSC up to 4.0 mmol_c L⁻¹ at coded "-1.682, -1 and 0" levels of EC_{iw} and SAR_{iw}. This increase in yield with RSC of waters up to 4.0 mmol_c L⁻¹ could be attributed due to better internal conditions of the disturbed as compared with the undisturbed soil conditions. Yield response was similar to RSC of waters at coded "1 and 1.682" levels of EC_{iw} and SAR_{iw}. A decrease in yield at high levels of RSC ≥ 6.0 mmol_c L⁻¹ seemed due to HCO $_3$ toxicity (Muhammed *et al.*, 1977).

Soil Characteristics

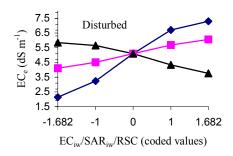
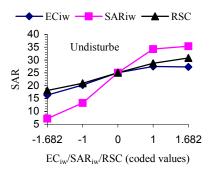


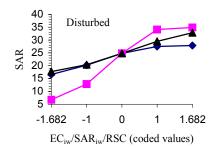
Table III. Regression coefficients (b) and coefficient of determination (R^2) for wheat yield and soil properties as affected with EC_{iw} , SAR_{iw} and RSC (log values)

Soil condition	\mathbf{b}_0	b 1	b ₂	b 3	b 11	b 22	b 33	b 12	b 13	b 23	\mathbb{R}^2
/crop											
Wheat grain yield ((average of	1992-93 and	d 1993-94 ye	ears)							
Undisturbed	2.239**	-0.175**	-0.179**	-0.251**	-0.061ns	-0.194**	-0.126*	-0.051 ns	-0.009 ns	$0.034\mathrm{ns}$	0.906**
Disturbed	2.766**	-0.104*	-0.125*	-0.178**	-0.031ns	-0.123*	-0.183**	-0.015 ns	-0.024 ns	0.001 ns	0.861*
EC (undisturbed)	1.654**	0.362**	0.109**	-0.141**	-0.097**	-0.009ns	-0.031ns	-0.023ns	0.079*	-0.008ns	0.972**
EC (disturbed)	1.634**	0.364**	0.116**	-0.132**	-0.097**	-0.008ns	-0.030ns	-0.031ns	0.073*	-0.008ns	0.951**
SAR(undisturbed)	3.219**	0.153**	0.475**	0.157**	-0.062ns	-0.161**	-0.017ns	-0.074ns	-0.022ns	-0.046ns	0.861*
SAR (disturbed)	3.212**	0.154**	0.489**	0.184**	-0.051ns	-0.171**	-0.015ns	-0.069ns	-0.037ns	-0.063ns	0.962**
BD (undisturbed)	0.436**	-0.013*	0.035**	0.025**	0.005ns	-0.011ns	-0.001ns	0.014ns	0.002ns	-0.001ns	0.894**
BD (disturbed)	0.424**	-0.011	0.031**	0.022**	0.006ns	-0.012*	-0.001ns	0.013ns	0.006ns	-0.002ns	0.861**
Ks (undisturbed)	-1.948**	0.037*	-0.093**	-0.097**	0.015ns	-0.022ns	0.014ns	-0.014ns	0.012ns	0.029ns	0.932**
Ks (disturbed)	-1.983**	0.032ns	-0.078**	-0.088**	0.072**	0.027ns	0.007ns	-0.010ns	0.006ns	-0.006ns	0.871**

^{*=} Significant at 0.01 level of probability; ** = Significant at 0.05 level of probability; ns = Non-significant; BD = Bulk density; K_s = Saturated hydraulic conductivity

Soil salinity (EC_e). The EC_e and SAR before the start of experiment were 2.20 dS m⁻¹ and 3.34, significantly increased years application of brackish waters (Table I). This has been shown through the best-fit quadratic relationships between EC_e, SAR, etc and EC_{iw}, SAR_{iw} and RSC (Table III). The values of coefficients of determination (R²) are highly significant and predicted EC_e, SAR and yield were fairly close to the observed values (five extra treatments) of these dependent variables.


The EC_e of undisturbed and disturbed soils increased with an increase in ECiw. At "0" coded levels of SARiw and RSC, the EC_e increased from 2.20 to 7.42 and 2.14 to 7.30 dS m⁻¹ for both the undisturbed and disturbed soil conditions, respectively (Fig. 2). Soil EC_e with EC_{iw} 0.65, 2.0, 4.0, 6.0 and 7.35 dS m⁻¹ was 2.20, 3.31, 5.21, 6.83 and 7.42 dS m⁻¹; 2.14, 3.24, 5.10, 6.71 and 7.30 dS m⁻¹, respectively which was 3.07, 56.5, 75.75, 77.5 and 71 % of the EC of respective water used for irrigation for the undisturbed and disturbed soils. The increase in soil salinity was more with EC_{iw} at higher than that at lower levels of SAR_{iw} and RSC for both the soil conditions. Lower soil EC_e resulted with similar ECiw at given coded levels of SARiw and RSC in the undisturbed than that in disturbed soil columns. Increase in soil ECe with ECiw of normal soils were reported by Singh et al. (1992) and Rashid et al. (1994). Results indicated that EC_e was < 4.0 dS m⁻¹ with EC_{iw} up to 2.0 dS m⁻¹ at given levels of SAR_{iw} and RSC, which was > 4.0 dS m⁻¹ with EC_{iw} ≥ 4.0 dS m⁻¹ at all the five levels of SAR_{iw} and RSC. The EC_e 4.0 dS m⁻¹ is the upper limit for saline-sodic soils (U.S. Salinity Lab. Staff, 1954).

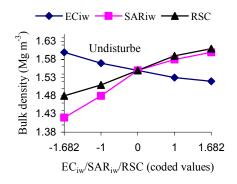

Soil EC_e increased significantly with SAR_{iw} at given EC_{iw} and SAR_{iw} for both the soil conditions (Fig. 2). At EC_{iw} and RSC levels of 4.0 dS m^{-1} and 4.0 $mmol_c$ L^{-1} ,

higher SAR_{iw} 32.0 resulted in more EC_e (6.11 and 6.06 dS m⁻¹) for the undisturbed and disturbed soils, the EC_e remained higher than with SAR_{iw} > 3.95 (Table III). At given ECiw and SARiw, the RSC waters tended to decrease EC_e. The EC_e of undisturbed and disturbed soil behaved similarly to RSC waters at coded "0" levels of ECiw and SAR_{iw} (Fig. 2). Results indicated that RSC of waters resulted in lower EC_e at coded levels of -1 and -1.682 than that at coded levels of 0, 1 and 1.682 of EC_{iw} and SAR_{iw}. The EC_e with SAR_{iw} up to 18 was ≤ 4.0 dS m⁻¹ at coded -1 and -1.682 levels of both the EC_{iw} and RSC. Contrary to this, the EC_e was > 4.0 dS m⁻¹ with SAR_{iw} ≥ 18 at coded 0, 1 and 1.682 levels of both the ECiw and RSC. Higher SARiw at a given EC_{iw} and/or RSC levels increased EC_e more than that with lower SAR_{iw} in both the soil conditions. This might be due to reduced permeability of soil resulting from irrigation with high sodicity (SAR and RSC) of waters, as a decrease in hydraulic conductivity was observed with high SAR_{iw} (Table III). A linear reduction in EC_e was noted with RSC of waters at given levels of ECiw and SARiw. It has been reported that HCO3 of water decreased soil salinity through precipitation of Ca²⁺ and Mg²⁺ (Muhammed & Rauf, 1983).

Soil sodication (SAR). The SAR was higher with EC_{iw} at coded levels of 0, 1 and 1.682 than that at -1.682 and -1 levels of SAR_{iw} and RSC, respectively (Table III). At given SAR_{iw} and RSC, the EC_{iw} increased soil SAR under both the soil conditions (Fig. 3). Similar SAR resulted with EC_{iw} ≥ 0.65 dS m⁻¹ for undisturbed and disturbed soils at coded levels 1 and 1.682 of both the SAR_{iw} and RSC. Bajwa *et al.* (1992) reported an increase in SAR of normal soils with an increase in EC_{iw} . An increase in soil SAR with increasing EC_{iw} at given SAR_{iw} and RSC may be due to greater formation of calcium carbonate and magnesium silicate

Fig. 3. Effect of ECiw, SARiw and RSC on SAR of soil

(Eaton, *et al.*, 1968). In general, at a given EC_{iw} and RSC, increasing SAR_{iw} increased SAR, the effect being more pronounced at higher coded levels 0, 1 and 1.682 of both the EC_{iw} and RSC. Soil SAR receiving water of SAR 3.95, 9.65, 18.0, 26.35 and 32.04 attained SAR levels of 7.16, 13.26, 25.03, 34.29 and 35.39, respectively which is 97, 103, 121, 117 and 100 % of the SAR_{iw} at coded "0" levels of EC_{iw} and RSC for the undisturbed soil. The corresponding SAR of disturbed soil was 6.73, 12.82, 24.38, 34.09 and 34.87, which is 86, 98, 119, 117 and 98 % of the SAR_{iw}.


Soil SAR was more with similar SAR_{iw} at given coded levels of EC_{iw} and RSC in the undisturbed than that in the disturbed soils. Higher levels of Na⁺, HCO⁻₃ and SAR_{iw} resulted in a higher Na⁺ saturation of soil at a given EC_{iw} and RSC. The increase in soil SAR with RSC of water was more at coded "1.682" levels of EC_{iw} and SAR_{iw} than that for the remaining levels of EC_{iw} and SAR_{iw}. Furthermore, at coded "0" levels of EC_{iw} and SAR_{iw}, increase in soil SAR was for disturbed than that for undisturbed columns with similar RSC (Fig. 3). This could be due to high RSC of waters, which caused formation of Na₂CO₃ and NaHCO₃ in soils, thereby more sodicat of soil (Gupta, 1980).

Soil bulk density. In general, bulk density of soil decreased with an increase in electrolytes at a given SAR and RSC of waters. It decreased from 1.60 to 1.53 and 1.57 to 1.52 Mg

 ${\rm m}^{-3}$ with an increase in EC_{iw} at coded "0" levels of SAR_{iw} and RSC for both the undisturbed and disturbed soils, respectively (Fig. 4). Reduction in bulk density of both the soil conditions was more with EC_{iw} at low coded -1 and –1.682 than that at high coded 1 and 1.682 levels of SAR_{iw} and RSC. Both the soil conditions behaved almost similarly to EC_{iw} at given levels of SAR_{iw} and RSC. It has been reported that bulk density was reduced from 0.04 to 0.06 Mg m⁻³ with EC_{iw} 2.98 dS m⁻¹ and SAR 8.0 for 0-15 cm depth (Coasta *et al.*, 1991). This decrease in bulk density was attributed to ${\rm Ca^{2+}_{iw}}$ (6.3 to 11.6 mmol L⁻¹) and ${\rm Ca^{2+}_{iw}}$ could help flocculation of soil particles, resulting in decreased bulk density (U.S. Salinity Lab. Staff, 1954).

At given EC_{iw}, RSC and/or SAR_{iw}, SAR and RSC of waters increased the bulk density. The bulk density increased from 1.40 to 1.56 Mg m⁻³ with SAR_{iw} from 3.95 to 26.35, remained constant with further increase in SAR_{iw} for the disturbed soil at coded "0" levels of both the EC_{iw} and RSC (Fig. 4). Contrary to this, bulk density of the undisturbed soil decreased with SAR_{iw} from 3.95 to 32.04 at coded "0" levels of both the EC_{iw} and RSC, increase in bulk density with SAR_{iw} being more pronounced at lower coded than that at higher coded levels of EC_{iw} and RSC. At coded "0" levels of both the EC_{iw} and SAR_{iw}, increase in bulk density with RSC of waters was more in the undisturbed than that in the disturbed (Fig. 4), being more at low coded

Fig. 4. Effect of EC_{iw}, SAR_{iw} and RSC on soil bulk density

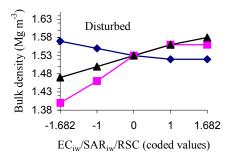
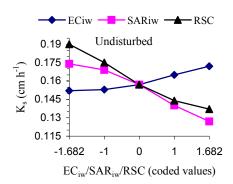
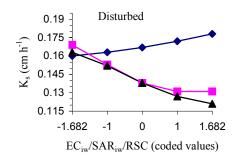




Fig.5. Effect of ECiw, SARiw and RSC on saturated hydraulic conductivity (Ks) of soil

than that at higher coded levels of EC_{iw} and SAR_{iw}.

The increase in bulk density with SAR_{iw} was more at coded -1.682 levels of EC_{iw} and RSC as compared with similar levels of SAR_{iw} at coded "-1, 0, 1 and 1.682" levels of EC_{iw} and RSC in both the types of columns. More increase in bulk density was noted with similar SAR_{iw} for the undisturbed than that for the disturbed soils. Similar trend in bulk density was recorded for undisturbed and disturbed soil with RSC water at coded "0" levels of EC_{iw} and SAR_{iw} . Higher bulk density was recorded for undisturbed than that for disturbed columns with SAR_{iw} and/or RSC at given levels of EC_{iw} , RSC and/or SAR_{iw} . Accumulation of Na^+ ions on exchange sites with high SAR water might have decreased the pore space to affect an increase in bulk density.

Saturated hydraulic conductivity (K_s). An increased in ECiw at a given SARiw and RSC increased the Ks of both the soil conditions. At coded "0" levels of SAR_{iw} and RSC, the K_s increased from 0.152 to 0.172 and 0.160 to 0.178 cm h⁻¹ for undisturbed and disturbed soil conditions as EC_{iw} increased from 0.65 to 7.35 dS m⁻¹, respectively. Higher K_s was recorded with ECiw at lower coded than that at higher coded levels of SAR_{iw} and RSC (Table III). The K_s with EC_{iw} 7.35 dS m⁻¹, SAR 32.04 and RSC 7.35 mmol_c L⁻¹ was, in general, one-half of that with EC_{iw} 7.35 dS m⁻¹, SAR_{iw} 3.95 and RSC 0.65 mmol_c L⁻¹ for the undisturbed soil columns. The values of K_s were noted for disturbed than that for undisturbed soil with similar ECiw and at a given SAR_{iw} and RSC. At similar EC_{iw}, higher values of K_s were noted at low (-1.682 and -1) than that at high (0, 1 and 1.682) coded levels of SAR_{iw} and RSC which could be due to high Na⁺ and HCO₃ in water that reduced the porosity of

At given EC_{iw} and RSC, the SAR_{iw} affected a decrease in K_s , magnitude being differed for the undisturbed and disturbed soil columns (Fig. 5). At coded "0" levels of both the EC_{iw} and RSC, more decrease in K_s was resulted with SAR_{iw} in undisturbed than that in the disturbed soil. Similar was the case in K_s with SAR_{iw} at all other coded levels of EC_{iw} and RSC (Table III). The decrease in K_s was also

noted with RSC of waters at a given levels of EC_{iw} and SAR_{iw} (Fig. 4). At coded "0" levels of EC_{iw} and SAR_{iw} , decrease in K_s with RSC waters was more for undisturbed than that in the disturbed soil. Higher K_s (0.137 cm h⁻¹) resulted with similar RSC of waters (7.35 mmol_c L⁻¹) in the undisturbed than that in disturbed (0.12 cm h⁻¹) soils at coded "0" levels of EC_{iw} and SAR_{iw} . A reduction in K_s with RSC from 0.65 to 7.35 mmol_c L⁻¹ was more at coded "-1.682 and -1" (lowest levels) than that at coded "1 and 1.682" (highest levels) levels of EC_{iw} and SAR_{iw} (Table III).

High SAR and/or RSC of waters affected a decrease in K_s at given levels of EC_{iw}, RSC and/or SAR_{iw} under both the soil conditions (Fig. 5). At coded "0" levels of EC_{iw} and RSC, reduction in K_s with SAR_{iw} was more in the undisturbed than that in the disturbed soil columns. Similar was the case with RSC of waters at given levels of ECiw and SAR_{iw}. At similar SAR_{iw} and/or RSC of waters, higher K_s was noted at low than that at high coded values of EC_{iw}, RSC and /or SAR_{iw}. At a given SAR, dispersion potential of a low EC_{iw} is greater than that for EC_{iw} (Suarez & Lebron, 1993). There was positive relationship between soil SAR and SAR_{iw} (Fig. 3). High SAR_{ss} or SAR_{iw} has to defloccule soils and consequently a decrease in K_s. Irrigation water having higher concentration of Na⁺ increased replaced Ca²⁺ from exchange sites. Replacement Ca²⁺ by high hydrated size Na⁺ could not neutralize net negative charge on soil colloids (Bohn et al., 1985), which caused dispersion, hence decrease in soil porosity and hydraulic conductivity. Translocations of particle into pores are considered important factors to decrease hydraulic conductivity of saltaffected soils (Rengasamy et al., 1984).

CONCLUSIONS

The wheat yield decreased linearly with an increase in EC_{iw} at given levels of SAR_{iw} and RSC. Economic wheat yield could be maintained with SAR_{iw} up to 18.0 at EC_{iw} and RSC up to 4.0 dS m^{-1} and 4.0 mmol_c L^{-1} , respectively for the undisturbed and disturbed soils. The RSC of waters up to 2.0 and 4.0 mmol_c L^{-1} were observed safe for wheat at

levels of EC_{iw} up to 4.0 dS m⁻¹ and SAR_{iw} up to 18.0 for the undisturbed and disturbed soils, respectively. It could be concluded that whole of the undisturbed and disturbed soil profile attained $EC_e > 4.0$ dS m⁻¹ and SAR > 13.0 with designed EC_{iw} , SAR_{iw} and/or RSC which are the upper limits for saline-sodic soils. The effect of SAR_{iw} and/or RSC of waters on bulk density and saturated hydraulic conductivity was more pronounced at coded 0, 1 and 1.682 than that -1.682 and -1 levels of both the EC_{iw} and RSC; EC_{iw} and SAR_{iw} .

REFERENCES

- Bajwa, M.S., O.P. Choudhry and A.S. Josan, 1992. Effect of continuous irrigation with sodic and saline–sodic waters on soil properties and crop yield under cotton–wheat rotation in Northwestern India. Agric. Water Management, 16: 53–61.
- Blake, G.R. and K.H. Hartge, 1986. Bulk Density. In: A. Klute (Ed.) Methods of Soil Analysis. Part I, 2nd Ed., pp: 363–73. Agronomy No. 9. SSSA, Madison, WI, USA.
- Bohn, H.L., B.L. McNeal and G.A. O'Connor, 1985. Soil Chemistry, 2nd Ed. John Wiley and Sons, Inc., NY, USA.
- Coasta, J.L., L. Prunty, B.R. Montgomery, J.L. Richardson and R.S. Alessi, 1991. Water quality effect on the soils and alfalfa. Soil Sci. Soc. Am. J., 55: 203–9.
- Eaton, F.M., G.W. McLean, G.S. Bredell and H.E. Doner, 1968. Significance of silica in the loss of magnesium from irrigation water. *Soil Sci.*, 105: 260–80.
- Francois, L.E., E.V. Maas, T.J. Donovan and V.L. Youngs, 1986. Effect of salinity on grain yield and quality, vegetative growth and germination of semi-dwarf and durum wheat. Agron. J., 78: 1053–8.
- Greenway, H. and R. Munns, 1980. Mechanisms of salt tolerance in non-halophytes. Ann. Rev. Plant Physiol., 31: 149–90.
- Gupta, I.C., 1980, The effect of irrigation with high sodium waters on soil properties and the growth of wheat. *In: Proc. Int. Symp. on Salt–Affected Soils.* Feb. 8–16, pp: 382–8. Central Soil Salinity Research Inst., Karnal, India.

- Jury, W.A., W.R. Gardner and W.H. Gardner, 1991. Soil Physics, 5th Ed., pp: 80–2. John Wiley and Sons, Inc. New York, USA.
- Khandelwal, R.B. and P. Lal, 1991. Effect of salinity, sodicity and boron of irrigation water on the properties of different soils and yield of wheat. J. Indian Soc. Soil Sci., 39: 537–41.
- Minitab, 1989. Minitab statistical software. Release–7, State College Pennsylvania, PA, USA.
- Montgomery, D.S., 1997. Design and Analysis of Experiments. 4th Ed. John Wiley and Sons, Inc., NY, USA.
- Muhammed, S. and A. Rauf, 1983. Management of high bicarbonate irrigation water. Final Report PL-480 Project No. PK-ARS 22. Dept. Soil Sci., Univ. Agric., Faisalabad, Pakistan.
- Muhammed, S., M. Ahmad and A. Rauf, 1977, Effect of saline–sodic waters on soil properties and plant growth. *In: Proc. Exxon Sem. Water Manage. Agric.*, Nov. 15–17, pp: 293–305. Lahore, Pakistan.
- Rashid, M., M.Y. Shakir and M. Jamil, 1994. Effect of brackish water on crop yields and properties of a soil treated with amendments. *Pakistan J. Soil Sci.*, 9: 86–90.
- Rengasamy, P., R.S.B. Greeve, G.W. Ford and A.H. Mehanni, 1984. Identification of dispersive behaviour and the management of redbrown earths. *Australian J. Soil Res.*, 22: 413–31.
- Shainberg, I. and J. Letey, 1984. Response of soils to sodic and saline conditions. *Hilgardia*, 25: 1–57.
- Singh, R.B., P.S. Minhas, C.P. Chauhan and R.K. Gupta, 1992. Effect of high salinity and SAR waters on salinization, sodication and yields of pearl—millet and wheat. *Agric. Water Manage.*, 21: 93–105.
- Suarez, D. L. and I. Lebron, 1993. Water quality criteria for irrigation with high saline water. *In:* Leith, H. and A. Al. Masoom (Eds.). *Towards* the Rational Use of High Salinity Tolerant Plants (Vol. 1), pp. 389– 97. Kluwer Academic Publishers, Amsterdam, The Netherlands.
- U.S. Salinity Laboratory Staff, 1954. Diagnosis and Improvement of Saline and Alkali Soils. USDA Hand Book 60. Washington, DC, USA.

(Received 04 September 2001; Accepted 26 October 2001)