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ABSTRACT 
 
An electronic nose was used to predict the number of infesting insects and the storage time of paddy rice. The multivariate 
statistical techniques such as principal component analysis (PCA), linear discriminant analysis (LDA), principle component 
regression (PCR), partial least square (PLS) and back-propagation neural networks (BPNN) were used to evaluate the 
electronic nose data, respectively. The PCA and LDA results showed that the electronic nose can distinguish paddy rice with 
different storage time (ST) and different number of infesting insects (NI). After employing PCR, PLS and BPNN, respectively 
to predict the infestation index (NI & ST), the three methods all had good prediction performances. The correlation coefficient 
between the NI real and the three predicted values was 0.955, 0.864, and 0.996 for the PCR, the PLS and the BPNN, 
respectively. The correlation coefficient between the ST real and the three predicted values was 0.992, 0.852 and 0.998. BPNN 
model had the highest prediction accuracy. The results implied that it is possible to predict the characteristics of insect 
infestation in stored paddy rice from signal of electronic nose. © 2011 Friends Science Publishers 
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INTRODUCTION 
 

Rice is the world’s most important food and a primary 
food source for more than a third of the world’s 
population. However, stored rice can have losses in both 
quantity and quality. Losses occur when the rice is attacked 
by stored product insects and microorganisms (Rahman 
et al., 2009; Gandhi et al., 2010). Thus, it is a top priority to 
find effective methods to reduce the level of insect 
infestation in rice during storage. One of the most 
important aspects of the integrated pest management is 
the early detection. Traditional detection methods are 
manual samples, traps, and probes (Neethirajan et al., 2007). 
These methods for insects’ identification request 
repetitive work and trained personnel, while sometimes 
observations through naked eyes are subjective and 
imprecise. 

In recent years there have been many techniques 
studied for insect detection in stored grain, such as acoustic 
detection, carbon dioxide measurement, uric acid 
measurement, near-infrared spectroscopy and soft X-ray 
method etc. These methods have the potential for use at the 
industry level to detect insects in rice samples (Neethirajan 
et al., 2007). However, they are not always applicable both 
for the cost and labor time to analyze one sample. Recently, 
a new technique for rapid detection of insects in stored rice 
has been reported, an Electronic nose (E-nose) systems 
could accurately and rapidly identify the quality of stored 
rice by analyzing the headspace volatiles in the rice 

(Balasubramanian et al., 2007; Zhang & Wang 2007; Pang 
et al., 2008). 

An E-nose is an instrument that combines electronic 
chemical gas sensors with partial specificity and appropriate 
pattern analysis techniques for the detection, identification 
or quantification of volatile compounds. Commercial E-
noses have been available since the early 1990s, which as 
compared to the traditional odor analysis methods (sensory 
panel or headspace GC), are quick, safe, less expensive, 
non-destructive to samples and can be automated (Peris & 
Escuder-Gilabert 2009). Because of their convenience and 
fast inspection characteristic, E-noses have been reported 
widely, especially in the field of food control, such as beef 
(Balasubramanian et al., 2004), milk (Labreche et al., 
2005), oil (Hai & Wang, 2006) and fruit (Marrazzo et al., 
2005). 

There are some literatures about the application of E-
nose in the detection of fungal contamination of cereal grain 
samples (Needham et al., 2005; Paolesse et al., 2006). Some 
recent studies have demonstrated E-nose capability in order 
to discriminate between non-infected and infected samples 
with different species through the production of volatile 
secondary metabolites and to demonstrate the variation of 
the metabolic pathway due to the contamination of grain 
(Evans et al., 2000; Presicce et al., 2006). An E-nose was 
used to detect five different stored duration wheat 
successfully (Zhang & Wang, 2008). However, there have 
been few studies on the prediction of insect infestation in 
stored rice by E-noses. 
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Appropriate data analysis and pattern recognition 
techniques are needed to construct reliable algorithms for 
interpreting the acquired signals or smell patterns for 
classification or prediction purposes. The smell patterns 
obtained from the E-nose detectors can be analyzed using 
various statistical and neural network tools. Pattern 
recognition techniques like principal component analysis 
(PCA), linear discriminant analysis (LDA), partial least 
squares (PLS), discriminant analysis (DA), cluster analysis 
(CA), artificial neural network (ANN) et al., have been used 
for data analysis in E-nose applications (Pavon et al., 2006; 
Zhang et al., 2007; Peris & Escuder-Gilabert, 2009). 
Balasubramanian et al. (2007) used linear and quadratic 
discriminant analysis techniques to evaluate the quality of 
stored barley based on the resistance generated by the E-
nose system. Evans et al. (2000) used a radial basis function 
artificial neural network to correlate sensor array responses 
with human grading of off-taints in wheat. It also becomes 
critical to build a reliable and robust classification model 
that could perform satisfactorily in real world conditions. 

The objectives of this work were: (1) to study the 
feasibility of the E-nose technique to evaluate the insect 
infestation in stored rice at different storage time; (2) to 
develop models for predicting the number of adult insects 
(NI) and storage time (ST) using E-nose signals. 
 
MATERIALS AND METHODS 
 
Experimental materials: Paddy rice samples were supplied 
by the experimental farm of Zhejiang University (variety: 
Zhou 903, grown in Hangzhou, China at 120:07E & 
30:10N). The paddy rice samples were harvested in August 
2009 and dried in ambient conditions to l2.0±1.0% moisture 
content. Test insects were Rice weevils, Sitophilus oryzae 
(L.). The female adult S. oryzaes 5 d-old were taken from a 
culture that was kept at the laboratory for two generations at 
27±1°C and 70±5% relative humidity (r.h.) on the rusty 
grain. 

The paddy rice samples were divided into 4 groups (5 
kg each group). Each group was placed in a 10 L cylindrical 
glass container, which was closed, except for a hole 3 cm in 
diameter (at the top of the container), which was covered 
with muslin for aeration. Then, different numbers of 5 d-old 
female adults of S. oryzae were introduced into each 
container. Based on the initial numbers of adult insects 
introduced, three groups of rice were P5 (introduced into 5 
insects male & females), P10 (introduced into 10 pests) and 
P40 (introduced into 40 pests), respectively. The 
corresponding uninfested normal rice served as control 
group, which labeled P0. The four groups were placed in an 
artificial climate chamber at 30±1� with 70±5% (r.h.) for 
up to 4 weeks. At each week, rice samples were taken for 
examination and measurement. For each group, 20 samples 
(50 g per sample) were prepared, and the adult insects were 
picked out before the measurements. 
E-nose and data acquisition: An E-nose device PEN2, 

provided by (WMA Airsense Analysentechnik GmbH) 
Schwerin, Germany, was used. PEN2 system consisted of a 
sampling apparatus, a detector unit containing the array of 
sensors and pattern recognition software (WinMuster v.1.6) 
for data recording. The sensor array was composed of 10 
different metal oxide sensors positioned into a small 
chamber. Each sensor has a certain degree of affinity 
towards specific chemical or volatile compounds. Table I 
lists all the sensors used and their main applications. This 
table contains current known or specified reaction. 

Each rice sample was placed into an airtight glass jar 
with a volume of 500 mL. The glass jar was then closed and 
kept at room temperature (25±1�) for 30 min before static 
headspace sampling. During the measurement process, the 
headspace gas of each sample was pumped into the sensor 
chamber at a constant rate of 200 mL/min via a Teflon-
tubing connected to a needle. When the gas accumulated in 
the headspace of vials was pumped into the sensor chamber, 
the ratio of conductance of each sensor changed. The sensor 
response was expressed as the ratio of conductance (G/G0) 
(G & G0, the conductivity of the sensors when the sample 
gas or zero gas blows over). The measurement procedure 
was controlled by a computer program. The flush time was 
set to 40 s. The measurement time was 65 s, which was 
enough for the sensors to reach stable values. The interval 
for data collection was 1 s. A computer recorded the 
response of the E-nose every second. When the 
measurement was completed, the acquired data was 
properly stored for later use. 
Pattern recognition: The NI and ST are the two most 
important indices to describe the rice damage level after 
infestation. In this paper, PCA and LDA were used to 
classify four groups of rice samples with different initial 
numbers of adult insects at different storage time. 
Multivariate calibration methods PCR, PLS and BPNN 
were employed to build the modes for predicting NI and ST 
values using E-nose signals. In order to evaluate the 
goodness of fit of these three models, multiple correlation 
coefficients (R2), standard error calibration (SEC) and 
standard error of prediction (SEP) were used. A low SEC 
and high R2 are evidences of a good regression model. 

PCA is a statistical technique for determining the key 
variables in a multidimensional data set that explain the 
differences in the observations and can be used to simplify 
the analysis and visualization of multidimensional data sets 
(Peris & Escuder-Gilabert, 2009). Scores, called principal 
components (PCs), are extracted, which explain decreasing 
amounts of variation within a group, with the proviso that it 
is orthogonal to the first. In general, the vast majority of the 
variation is contained in a few PCs without significantly 
reducing the value of the information stored within it. 

LDA is one of the most used classification procedure. 
The method tries to maximize the variance between 
categories and minimize the variance within categories. This 
means that in theory, it should be superior to PCA in 
classifying subjects into groups. 
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PCR and PLS Regression are two of the most widely 
employed multivariate calibration methods, which compress 
all the statistically significant information down into low 
dimensional spaces characterized by a small number of 
orthogonal latent vectors. Generally, the analytical 
applications are based on the assessment of a linear model; 
the model has the following general form: 
 

Yi = β0 + βi × Xi             ( i=1,2,3,……, N). 
 

Where Yi is the dependent variable; β0 is the intercept 
and βi are the regression coefficients of the independent 
variable Xi; N is the number of the independent variable. 
These methods form linear combinations of the predictive 
variables X and use them as regressors for the dependent 
variable Y. The rationale behind this is to determine a 
maximum compromise between having a small least-
squares error on the calibration set and having a stable 
model, which can be used safely for routine analysis. 

The PCR is simply a PCA analysis followed by a 
regression step. PCA is firstly applied to the matrix of 
independent variables X. Principal components obtained 
from PCA are then used as regressors instead of the original 
variables. When the variables are noticeably collinear, only 
a small number of components need to be introduced in the 
model. In PCR, the scores, which are used as regressors, are 
assessed by using no information from Y. Thus, if another 
dependent variable is to be predicted from X, the PC scores 
remain equal. 

PLS is related to PCR in that the spectral 
decomposition is also performed, but this decomposition 
step is performed differently. In PLS, the linear 
combinations used in the prediction equation are obtained 
by taking both X and Y into account. The stages of 
determination of the regressors and of the calibration 
regression can be considered as linked together. The PLS 
components primarily describe the variations of the 
independent variables, which are relevant for modelling the 
variations of Y. 

BPNN is a type of neural networks that most widely 
used to solve problems in modeling and classification 
(Zhang & Wang, 2008). The model has the ability to 
simulate a nonlinear system. The typical back-propagation 
network consists of an input layer, an output layer and at 
least one hidden layer. Each layer contains neurons and each 
neuron is a simple micro-processing unit, which receives 
and combines signals from other neurons. Each neuron has 
weighted inputs, summation function, transfer function and 
output. The behavior of a back-propagation network is 
mainly determined by the transfer functions of its neurons. 
 
RESULTS AND DISCUSSION 
 
E-nose response to rice volatile: In order to compare the 
response signals of e-nose between infested rice and normal 
rice, P 5 and P 0 were used. Fig. 1 showed the typical 
response signals of ten sensors for normal rice and infested 

rice by 5 adult insects at the 4th week. Each curve 
represented the variation in conductivity of each sensor 
against time when the rice volatiles reached the 
measurement chamber. The sensor response signal 
represented by the ordinate was the gas response G/G0, 
where G and G0 express the resistance of a sensor in clean 
air and in a detecting gas, respectively. In the initial period, 
the ratio of conductance (G/G0) of each sensor was close to 
1.0, then increased or decreased continuously and finally 
stabilized after about 50 s. In this research, the signal of 
each sensor at 58th s was used in analysis. 

The value of sensor response signals of the normal rice 
and the infested rice differed with the 4th week (Fig. 1). Fig. 
1a showed that the value G/G0 (0.8-1.5) of normal rice was 
lower than G/G0 (0.6-2.6) (in Fig. 1b) of the rice infested by 
5 adult insects, indicating that the sensor responses of the E-
nose differed between normal rice and infested rice. 
Previous study has shown that the volatile compound 
profiles differed between contaminated wheat samples and 
no fungi inoculated samples using gas chromatography-
mass spectrometer (GC-MS). Comparison with un-
contaminated wheats, the contaminated samples had higher 
concentration of aromatic compounds (Presicce et al., 
2006). E-nose could successfully classify wheat at different 
stroage age (Pang et al., 2008). Those implied that the E-
nose technique might be used to distinguish with rice by 
different level of insect infestations. 
PCA and LDA Analysis 
NI analysis: To investigate whether the E-nose was able to 
distinguish the four groups of rice at different storage times 
(week 1, week 2, week 3 & week 4), PCA and LDA were 
employed. The results are shown in Fig. 2. Principal 
component 1 (PC1) vs principal component 2 (PC2) were 
shown in (Figs. 2 a1-a4), together explaining more than 
85% of the variance. First linear discriminant (LD1) vs 
second linear discriminant (LD2) were shown in (Figs. 2 b1-
b4), together explaining more than 91% of the variance. All 
these implied that the system has enough resolution to 
explain the classification. 

The PCA discrimination result of the four groups (P 0, 
P 5, P 10 & P 40) was shown in the (Fig. 2a1) at the week 1. 
Each group was distinguishable from the others, except P 5 
or P 10 overlapped each other lightly. And the distinction 
between P 0 group and P 40 group was greater. While in 
week 2 and week 3, groups P 0 were clearly distinguishable 
from the other three groups; groups P 5, groups P 10 and 
groups P 40 overlapped each other. The distinction between 
P 0 and other three groups in week 2, week 3 and week 4 
were better than in week 1. These results demonstrated that 
the volatiles of normal rice samples become more and more 
significantly different from those infested by different 
numbers of insects with storage time, which indicated that 
the quality of rice declines faster under insect 
infestation. 

Figs. 2b1-b4 are the LDA results of the same data 
analyzed by PCA. Similar to the PCA analysis of Figs. 2a1, 
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Figs. 2b1 also showed a partial overlapping between P 5 
group and P 10 group. In Figs. 2b2 and Figs. 2b3, all the 
four groups were clearly distinguished from each other, but 
in Figs. 2b4, the P 5 group and P 10 group were overlapped 
again. The results could be explained by the deterioration 
process of the infested rice. The deterioration of rice quality 
and the variation of volatiles were limited at the first week, 
thus the difference in volatiles between P 5 group and P 10 
group were not obvious, which caused the overlapped 
phenomena on PCA and LDA results. The rice quality 
deteriorated faster after 2 weeks. 

The performance results for LDA were much better 
than PCA. This is because LDA tries to summarize the 
separation of samples among groups into a reduced space, 
while PCA is a projection method of the original variables 
onto new ones, orthogonal and arranged according to their 
eigenvalue. 
ST analysis: In order to study the deterioration process of 
the insects infested rice samples during storage, PCA and 
LDA were applied and the results are shown in Fig. 3. 

After employing PCA, Figs. 3a1 showed that there is 
no clear discrimination among the four storage times (week 
1, week 2, week 3 & week 4) of the normal rice samples (P 
0 group), this caused by the high level of similarity among 
the rice samples in the pattern classification space. 
However, in (Fig. 3a2-a4), the four storage times of the 
samples from group P5, P 10, P40 could be clearly 
discriminated, respectively and in each figure, there was 
greater distinction between week1’s data and other weeks’ 
data. In general, expect group P 0, different storage times of 
the other three groups (P5, P10, P40) could be all 
distinguishable by PCA. 

The same datasets were analyzed by LDA. The results 
were shown in (Fig. 3b1-b4). Compared to PCA, the four 
groups (P0, P5, P10, P40) all had perfect classification of 
their different storage times, even the P0 group was clearly 
divided into four regions representing its four storage times. 
In general, LDA had better results than PCA. 
Prediction of insect infestations: Early detection and 
accurate prediction are required in insect prevention process, 
so the week 1 data of the four groups were chosen for 
predicting the NI; the data of P5 group were chosen for the 
prediction of ST (from first week to the fourth week). 
Prediction of NI: The four rice groups (P0, P5, P10 & P40) 
at week 1 were chosen to construct the prediction models 
for predicting the NI. 60 rice samples (15 samples of each 
group) were selected randomly to establish calibration 
model; the rest of 20 rice samples (5 samples of each group) 
were chosen as the prediction sample. 

The PCR calibration model for NI prediction was 
given as follows:  
 

NI= - 269.073 + 14.808×S1 + 16.127×S2 + 
12.342×S3 - 14.153×S4 + 281.607×S5 - 10.613×S6 + 
11.361×S7 - 2.599×S8 - 32.626×S9 - 27.919×S10              
(1). 

Table II shows the R2, SEC and SEP for infestation 
indices predicted for rice. The prediction ability of the E-
nose was shown in (Fig. 4a), where each rhombus 
represents the predicted values versus the real values. The 
R2 of calibration model of NI was high as 0.955, with the 
SEC of 0.566. When the model was used to predict the rest 
20 samples, prediction results were also high (R2 = 0.923, 
SEP = 1.277). 

The PLS calibration model for NI prediction was 
given as follows:  
 

NI=8.549 + 9.461×S1 + 3.065×S2 + 9.833×S3 - 
20.016×S4 + 101.809×S5 - 14.496×S6 - 8.158×S7 - 
10.837×S8 - 36.003×S9 - 42.585×S10                   (2). 

Fig. 1: Response curves of ten sensors for rice volatiles 
at 4th week: (a) normal rice; (b) rice infested by 5 adult 
insects 
 

 
Fig. 2: Scores plot of four groups of rice at different 
storage times (week 1, week 2, week 3 & week 4): (a1-
a4) PCA and (b1-b4) LDA 
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The PLS prediction results for NI were presented in 
(Fig. 4b). The R2 was 0.864, with the SEC of 1.308. When 
the model was used for prediction, the results (R2 = 0.855, 
SEP =1.687) were not as good as the PCR model. 

While applying the BPNN, the response values of the 
E-nose at 58th s were optimum to be used as the input vector 
of ANN. The architecture of the artificial neural network 
chosen was 10×18×1 three-layer back-propagation 
according to Kolmogorov’s theorem, hereinto, ten was the 
num of input neurons, the value of NI as target output, 
respectively. The training algorithm was the variable 
learning rate back-propagation (traingdx) algorithm 
available in MATLAB’s Neural Network Toolbox. After 
several attempts, training parameters were chosen with 
maximum epoch of 1000 and goal of 0.01, respectively. The 
R2 was 0.996, with the SEC of 0.159. When the model was 
used to predict the rest 20 samples, the prediction results 
were great (R2 = 0.995, SEP = 0.319). 
Prediction of ST: Four weeks’ datasets of P 5 group were 
chosen for prediction of ST. 60 rice samples (15 samples of 
each week) were selected randomly to establish calibration 
models; the rest of 20 rice samples (5 samples of each week) 
were predicted using the models. 

The PCR calibration model for ST prediction was 
given as follows:  

ST=130.189 - 9.643×S1 + 5.394×S2 - 8.547×S3 - 
19.579×S4 - 49.733×S5 - 7.591×S6 - 13.108×S7 - 
23.268×S8 + 11.662×S9 - 5.844×S10                      (3). 
 

The prediction ability of the E-nose was shown in 
(Figs. 5a), where each rhombus represented the predicted 
values versus the real values. The R2 of calibration model of 
ST was high as 0.992, the SEC of 0.308. When the model 
was used to predict the 20 samples, the prediction results 
were also high (R2 = 0.986 SEP =0.534). 

The PLS calibration model for ST prediction was 
given as follows:  
 

ST=83.718 - 5.238×S1 - 1.825×S2 - 6.321×S3 - 
4.099×S4 - 27.509×S5 + 7.089×S6 - 3.986×S7 + 5.982×S8 
+ 3.260×S9 - 29.484×S10                         (4). 
 

The correlation coefficient of calibration model of ST 
was 0.852, the SEC of 0.815. When the model was used to 
predict the 20 samples, the results (R2 = 0.848, SEP=1.506) 
were not as good as the PCR model. 

BPNN was also applied to predict the ST. The 
network topology was designed 10×18×1. The correlation 
coefficient of calibration model of ST was 0.998, with the 
SEC of 0.062. When the model was used to predict the rest 
20 samples, the result was also high (R2 = 0.998, SEP = 
0.209). 
Comparison of PCR, PLS and BPNN models: The 
predictive ability of PCR, PLS and BPNN model are shown 
in (Figs. 4-5). The corresponding SEP and R2 values 
obtained for all models were listed in Table II. Comparing 
R2 values of PCR, PLS and BPNN, in all cases better results 
were obtained by the BPNN method (0.995 for NI, 0.998 for 
ST). Comparing corresponding SEP values of PCR, PLS 
and BPNN, better results were also obtained by the BPNN 
method (0.319 for NI, 0.209 for ST). The models built by 

Fig. 3: Scores plot of different storage times for four 
groups (P 0, P 5, P 10 & P40): (a1-a4) PCA and (b1-b4) 
LDA 
 

Fig. 4: Comparison of the NI real values with the 
predicted ones from the PCR, PLS and BPNN models: 
(a) PCR; (b) PLS; (c) BPNN 
 

 
Fig. 5: Comparison of the ST real values with the 
predicted ones from the PCR, PLS and BPNN models: 
(a) PCR; (b) PLS; (c) BPNN 
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the BPNN appeared to be of high ability of prediction. 
 

CONCLUSION 
 

Both PCA and LDA had good distinction for paddy 
samples with different storage time and different numbers of 
infesting insects, but the LDA analysis had better result than 
PCA. PCR, PLS and BPNN methods all had the ability of 
predicting the NI and ST of the rice samples. The BPNN 
model had the best prediction results. The results indicated 
that it is possible to use e-nose technique for predicting the 
characteristics of insect infested rice. 
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Table I: Sensors used and their main applications in PEN 2 
 
Number 
in array 

Sensor-
name 

General description Reference 

S1 W1C Aromatic compounds Toluene, 10 ppm 
S2 W5S Very sensitive, broad range sensitivity, react on nitrogene oxides, very sensitive with negative signal NO2, 1 ppm 
S3 W3C Ammonia, used as sensor for aromatic compounds Propane, 1 ppm 
S4 W6S Mainly hydrogen, selectively, (breath gases) H2, 100 ppb 
S5 W5C Alkanes, aromatic compounds, less polar compounds Propane, 1 ppm 
S6 W1S Sensitive to methane (environment) ca. 10 ppm. Broad range, similar to No. 8 CH3, 100 ppm 
S7 W1W Reacts on sulfur compounds, H2S 0.1 ppm. Otherwise sensitive to many terpenes and sulfur organic 

compounds, which are important for smell, limonene, pyrazine 
H2S, 1 ppm 

S8 W2S Detects alcohol’s, partially aromatic compounds, broad range CO, 100 ppm 
S9 W2W Aromatics compounds, sulfur organic compounds H2S, 1 ppm 
S10 W3S Reacts on high concentrations >100 ppm, sometime very selective (methane) CH3, 10 CH3, 100 ppm 
 
Table II: Results of calibration and prediction for rice infestation indices based on the E-nose signals 
 

Calibration Prediction Insect infestation indices Model 
R2 SEC R2 SEP 

PCR 0.955 0.566 0.923 1.277 
PLS 0.864 1.038 0.855 1.687 

 
NI 

BPNN 0.996 0.159 0.995 0.319 
PCR 0.992 0.308 0.986 0.534 
PLS 0.852 0.815 0.848 1.506 

 
ST 

BPNN 0.998 0.062 0.998 0.209 


