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ABSTRACT 
 

Salinity either in the soil or irrigation water hampers the profitable crop production. This study was conducted to evaluate the 

response of rice genotypes to salt stress. Four rice genotypes (IR29, CHIEH-KENG44, CHING-YIN1 and RYKUU15) were 

sown in germination trays filled with soil especially formulated for rice and were then transferred to iron containers. Salt stress 

(100 mM NaCl) was imposed in equal increments of 25 mM per day. Salt stress caused substantial decrease in plant height, 

shoot length, root and shoot fresh and dry weights, leaf area, and fresh and dry weight of seedlings of all rice genotypes. 

Although the genotypes responded to salt stress differently, however, root length of IR29 and RYKUU15 was increased under 

salt stress. Salt stress increased the polyphenol contents and antioxidant activity of all rice genotypes, but maximum 

polyphenol contents were observed in CHING-YYEH1. Salt stress caused substantial decrease in K
+
/Na

+
 ratio owing to 

significant rise in Na
+ 

contents on the expense of K
+
, but genotypes behaved differently in this regard. Minimum decrease in 

seedling fresh and dry weights was observed in rice genotype CHING-YIN1 owing to less Na
+
 uptake under salt, which also 

helped in maintaining better K
+
/Na

+
 ratio. Although Na

+ 
content indicated a strong negative correlation, whereas K

+
/Na

+ 
ratio 

had strong positive correlation with seedling fresh and dry weights. In conclusion, although salt stress decreased the growth of 

tested rice genotypes; genotype CHING-YIN1 was more resistant to salinity amongst all the genotypes owing to reduced 

Na
+
content and greater K

+
/Na

+
 ratio. This study suggests that seedling fresh weight, tissue Na

+
 contents and tissue K

+
/Na

+
 

ratio may be used as markers in screening rice genotypes resistant to salt stress. © 2013 Friends Science Publishers 
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INTRODUCTION 
 

Salinity is a serious danger to agriculture of arid and 

semi-arid regions of the world owing to limited rainfall tied 

with high evapotranspiration demand due to prevailing high 

temperature (de Azevedo Neto et al., 2006). It is generally 

perceived that salt stress occurs only in arid- and semi-arid 

regions but in reality any climatic zone of the world is not 

free from this problem (Bhutta et al., 2004; Rengasamy, 

2006; Murtaza et al., 2011). According to some estimates, 

more than 800 million hectares (Mha) of land of this globe 

is salt-affected, either by salinity (397 Mha) or sodicity (434 

Mha) (FAO, 2005; Munns, 2005). 

Among many salt contaminants, NaCl is the dominant 

in saline soils and is readily soluble in water to yield toxic 

ions like sodium (Na
+
) and chloride (Cl

–
). Being a smaller 

molecule, Na
+
 is readily absorbed by the roots of higher 

plants and ultimately distributed in all plant parts to cause 

toxic ion damage, osmotic stress and imbalance nutrition in 

rice (Oryza sativa L.) plants (Siringam et al., 2009, 2011). 

Osmotic stress is linked with the accumulation of ions in soil 

solution whereas, nutritional imbalance and specific ion 

effect is connected with buildup of ions mainly Na
+
 and Cl

–
 

at toxic levels leading to hamper the absorption of other 

essential elements like calcium (Ca
+2

) and potassium (K
+
) 

etc. (El-Bassiouny & Bekheta, 2001; Munns et al., 2006). 

Toxic levels of Na
+
 in plant organs damages membranes and 

organelles that results in growth reduction and abnormal 

development before plant mortality (Davenport et al., 2005; 

Quintero et al., 2007). According to bi-phasic model of 

salinity induced growth reduction in cereals proposed by 

Munns (1993), osmotic stress during 1
st
 phase and ion 

toxicity during 2
nd

 phase is responsible for growth reduction.  

Salinity-induced osmotic stress alters the general 

metabolic processes and enzymatic activities leading to over 

generation of reactive oxygen species (ROS) to cause 

oxidative damage (Menezes-Benavente et al., 2004). These 

ROS produced in plants are highly toxic and cause damage 

to proteins, lipids, carbohydrates and DNA. Photosystems I 

and II of chloroplast, and complex I, ubiquinone and 

complex III of electron transport chain (ETC) in 

mitochondria are the major sites of their synthesis (Gill & 
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Tuteja, 2010). According to Meloni et al. (2003), salt stress 

caused injury to cell membrane and enhanced membrane 

leakage in salt-sensitive rice cultivars. Plants display 

multigenic responses against salt stress, which involve 

osmotic and ionic homeostasis, and cell detoxification with 

the induction of antioxidant defense mechanisms (Zhu, 

2001; Sairam & Tyagi, 2004). Higher buildup of 

polyphenols in plants under salt stress plays an important 

physiological role in salinity-induced oxidative damage. For 

instance, accumulation of polyphenols protected youngest 

leaves of maize from ROS-induced oxidative damages 

(Hichem et al., 2009). 

Great genetic diversity for salt resistance amongst 

different genotypes of cultivated crops such as wheat 

(Sairam et al., 2005; Jafar et al., 2012), sugarcane (Akhtar et 

al., 2003), maize (Akramet al., 2007), canola (Farhoudiet 

al., 2012) and rice (Gurmani et al., 2006; Quinet et al., 

2010) has been reported. Being moderately salt resistant, 

rice may be grown in salt-affected areas. Mass screening 

and physiological characterization of rice genotypes may 

help in improving resistance against salt stress. It was 

hypothesized that rice genotypes differ for their potential of 

salt resistance. This study was conducted to evaluate 

different rice genotypes, of Korean origin, under salt stress 

on morphological and physiological basis.  

 

MATERIALS AND METHODS 
 

Site description and experimental details: This 

experiment was conducted in a plastic house (with 22/16ºC 

day/night temperatures, respectively) at Department of Crop 

Science and Biotechnology, Dankook University, South 

Korea.  

Sprouted seeds (25 in number) of rice genotypes IR29, 

CHIEH-KENG44, CHING-YIN1 and RYKUU15 were 

sown in germination trays (5 seeds in one hole) filled with 

artificial rice soil. Soil was composed of vermiculite, 

diatomaceous earth, clay, coco peat, charcoal and water-

soluble humic acid having moisture contents 25±8%, bulk 

density 0.50±0.10 Mg m
-2

, pH 5.4, EC 2 dS m
-1

, ammonia 

nitrogen (NH4-N) 350 ppm, and available phosphorous (P) 

350 ppm. After achieving the constant emergence count, 15 

rice seedlings were maintained in each replicate with three 

seedlings per hole. Germination trays were shifted in iron 

containers having 25 mM NaCl solution (salt stress) or tap 

water (control). Solution concentration was increased to 50, 

75 and 100 mM NaCl on 16, 17, 18
th
 day after sowing, 

respectively in salt stress treatment. The experiment was 

conducted in completely randomized design (CRD) with 

factorial arrangement having five replications.  

Observations: On 23
rd

 day after sowing, experiment was 

harvested to record observations. Immediately after harvest 

of experiment, root and shoot lengths, root and shoot fresh 

weight and seedling fresh weight of ten randomly selected 

seedlings from each replicate were taken and averaged. 

After that these samples were put in an oven at 70°C for 72 

h to record root and shoot dry weight, and seedling dry 

weight. Leaf area of rice seedlings was measured at 

harvesting by a leaf area meter (Area Meter AM-200 ADC 

Bio-scientific limited). 

One gram plant sample was dissolved in 10 mL of 

80% methanol to prepare extract to estimate total 

polyphenols and antioxidant activities. Total polyphenols 

contents were determined by reacting phenolic compounds 

with phosphomolybdate blue using Folin–Ciocalteu’s 

procedure (Shen et al., 2009). 

Antioxidant activities of the extracts were measured 

by scavenging the 1,1-diphenyl-2-picrylhydrazyl (DPPH) 

free radicals in a process guided by its discoloration (Lee & 

Lee, 2004). 

Sodium (Na
+
) and potassium (K

+
) contents (mg g

-1
 dry 

weight) of seedlings was determined from 0.5 g dried 

digested sample with flame photometer (Jenway PFP-7). 

After that K
+
/Na

+ 
ratio was also computed. 

Statistical analysis: The collected data was statistically 

analyzed according to Fisher’s analysis of variance 

technique. Least significant difference test (LSD) at P<0.01 

level was used to compare treatments means (Steel et al., 

1997). 

 

RESULTS 
 

Rice genotypes IR29 and RYKUU15 respectively 

observed 16.00 and 12.30% increase, while genotypes 

CHIEH-KENG44 and CHING-YIN1 respectively observed 

7.78 and 16.00% decrease in root length under salt stress 

(Table I). Salinity caused substantial decrease in shoot 

length of all rice genotypes with maximum decrease 

(42.40%) in genotype IR29 (Table I). Likewise, leaf area of 

all rice genotypes was markedly decreased under salt stress; 

and minimum reduction (56.62%) was observed in genotype 

CHING-YIN1 (Table I).  

Likewise, salt stress decreased the root fresh and dry 

weights in all rice genotypes; however, minimum decrease 

was noted in genotype CHING-YIN1 in this regard (Table 

II). Moreover, salinity significantly decreased the shoot fresh 

and dry weights of all rice genotypes; however, genotypes 

differed in their response to salinity. Minimum decrease in 

shoot fresh and dry weights was observed in genotype 

CHING-YIN1 whereas genotype CHIEH-KENG44 

observed maximum decrease in this regard (Table II). 

Salt stress decreased the seedling fresh and dry 

weights of all rice genotypes (Table III). However, genotype 

CHING-YIN1 had minimum decrease in seedling fresh and 

dry weights, respectively (Table III). Salt stress increased 

the total polyphenols and antioxidant activityin all rice 

genotypes with varying degree (Table III). In this regard, 

maximum total polyphenols and antioxidant activity was 

observed in genotype CHING-YIN1 (Table III). 

Salt stress significantly decreased the seedling K
+ 

contents with simultaneous increase in Na
+ 

contents (Table   

IV). Rice genotypes RYKUU15 and IR29 had 547.49 and 
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455.65% rise in Na
+
 contents, respectively; whereas 

genotype CHING-YIN1 had minimum (244.35%) rise in 

Na
+
 contents (Table IV). Moreover, K

+
/Na

+ 
ratio was 

significantly decreased by salt stress in all genotypes, with 

varying degree, and minimum decrease was noted in 

CHING-YIN1 (Table IV). 

Correlation analysis indicated strong negative 

relationship between seedling Na
+ 

contents and seedling 

fresh and dry weights (Table V). However, strong positive 

association of K
+
/Na

+
ratio with seedling fresh and dry 

weight, and root fresh weight was observed (Table V). 

Moreover, correlation of total polyphenols and antioxidant 

potential with seedling fresh and dry weights, and root fresh 

weight was non-significant (Table V). 

 

DISCUSSION 
 

Salt stress significantly decreased the growth of all rice 

genotypes, although to a varying degree (Tables I-III). 

Decrease in seedling fresh and dry weights was primarily 

due to increase in Na
+ 

contents and decrease in K
+
/Na

+ 
ratio 

(Table IV). This has also been indicated by strong negative 

correlations between seedling Na
+ 

contents and seedling 

fresh and dry weights, and positive association of K
+
/Na

+ 

ratio with seedling fresh and dry weights (Table V). 

Although polyphenols and antioxidant potential were 

Table 1: Influence of salt stress on root and shoot length, and leaf area of different rice genotypes 

 
Treatments Root length (cm) Shoot length (cm) Leaf area (cm2 plant-1) 

Control Salinity Decrease over 

control (%) 

Control Salinity Decrease over 

control (%) 

Control Salinity Decrease over 

control (%) 

IR29 6.00±0.12 c 6.96±0.26 b 16.00 12.50±0.51 c 7.20±0.60 e 42.40 11.06±0.29 a 3.12±0.42 e 71.79 
CHIEH-KENG44 7.46±0.40 a 6.88±0.33 b -7.78 19.72±0.52 a 13.97±0.84 b 29.16 11.61±0.74 a 3.18±0.19 e 72.61 

CHING-YIN1 6.25±0.25 c 5.25±0.12 d -16.00 19.78±0.55 a 12.40±0.30 c 37.31 9.96±0.74 b 4.32±0.12 d 56.62 

RYKUU15 6.83±0.19 b 7.67±0.19 a 12.30 13.89±0.32 b 9.77±0.51 d 29.66 9.10±0.32 c 2.49±0.25 e 72.64 

LSD at p 0.01 0.44 0.94 0.77 

Means not sharing the same letter within a column, for a factor, differ significantly from each other at p 0.01 

 

Table 2: Influence of salt stress on root and shoot fresh and dry weights of different rice genotypes 

 
Treatments Root fresh weight  

(mg per seedling) 

Root dry weight  

(mg per seedling) 

Shoot fresh weight  

(mg per seedling) 

Shoot dry weight  

(mg per seedling) 

Control Salinity Decrease 

over control 

(%) 

Control Salinity Decrease 

over control 

(%) 

Control Salinity Decrease 

over control 

(%) 

Control Salinity Decrease 

over control 

(%) 

IR29 120.60± 

1.75 e 

96.66± 

4.65 f 

19.85 40.20± 

0.58e 

32.22± 

1.55f 

19.85 51.70± 

2.12 f 

31.53± 

0.66 g 

39.01 10.34± 

0.42 f 

6.31± 

0.13 g 

38.97 

CHIEH-

KENG44 

184.44± 

7.62 a 

127.10± 

1.95 e 

31.09 61.48± 

3.54 a 

41.37± 

0.65e 

32.71 93.30± 

2.94 a 

53.09± 

1.22 f 

43.10 18.66± 

0.59 a 

10.72± 

0.24 f 

42.55 

CHING-YIN1 178.33± 
2.00 a 

168.00± 
2.57 b 

05.79 59.44± 
0.67a 

56.00± 
0.86b 

5.78 81.88± 
2.01 b 

74.52± 
2.15 c 

08.99 16.38± 
0.40 b 

14.90± 
0.43 c 

09.04 

RYKUU15 153.54± 

3.10 c 

138.99± 

6.67 d 

09.48 51.18± 

1.03 c 

45.66± 

2.22 d 

10.79 69.36± 

1.42 d 

57.05± 

1.38 e 

17.75 13.87± 

0.28 d 

11.41± 

0.28 e 

17.73 

LSD p 0.01 8.78 2.93 3.22 0.64 

Means not sharing the same letter within a column, for a factor, differ significantly from each other at p 0.01 

 

Table 3: Influence of salt stress on seedling fresh and dry weights, total polyphenols and antioxidant activity of 

different rice genotypes 

 
Treatments Seedling fresh weight 

(mg) 

Seedling dry weight 

(mg) 

Total polyphenols 

(mg GAE g-1 DW) 

Antioxidant activity 

(IC50; µg mL-1) 

Control Salinity Decrease 

over control 

(%) 

Control Salinity Decrease 

over control 

(%) 

Control Salinity Decrease 

over control 

(%) 

Control Salinity Decrease 

over control 

(%) 

IR29 172.30± 
2.32 f 

128.20± 
5.29 g 

25.59 50.54± 
0.61d 

38.53± 
1.68 e 

23.76 52.19± 
1.79 d 

62.01± 
2.48 a 

18.82 154.50± 
6.02 b 

105.96± 
1.16 e 

31.42 

CHIEH-

KENG44 

277.74± 

13.50 a 

180.70± 

3.00ef 

34.94 80.14± 

4.12 a 

52.09± 

1.07 d 

35.00 55.92± 

2.88 c 

58.55± 

1.40bc 

4.70 156.86± 

1.48 b 

125.17± 

2.69 c 

20.20 

CHING-YIN1 257.63± 

3.20 b 

241.51± 

3.45 c 

6.26 73.38± 

1.33 b 

64.69± 

1.96 c 

11.84 48.71± 

0.64 c 

63.35± 

0.74ab 

30.06 191.95± 

7.93 a 

104.43± 

1.71e 

45.60 

RYKUU15 222.8± 
3.88 d 

189.71± 
3.56 e 

14.89 65.05± 
1.17 c 

51.32± 
0.72 d 

21.11 55.36± 
2.62 cd 

61.40± 
0.65ab 

10.91 116.73± 
6.08 d 

92.97± 
0.95 f 

20.35 

LSD p 0.01 8.78 2.93 3.22 0.64 

Means not sharing the same letter within a column, for a factor, differ significantly from each other at p 0.01 

*GAE: Gallic acid equivalent, **IC50 is the concentration needed to inhibit activity of free radical below 50% 
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increased under salt stress (Table IV), absence of any 

significant correlation of total polyphenols and antioxidant 

potential with seedling fresh and dry weights (Table V) 

indicated that generation of ROS was not the only reason for 

salt-induced decrease in rice growth. Salt-induced osmotic 

stress (Bandeoglu et al., 2004), altered metabolism, inability 

of apoplastic acidification and lack of turgor seemed to be 

the possible reasons of salinity-induced decrease in rice 

growth (Munns & Tester, 2008); increase in Na
+
 uptake also 

contributed towards this (Munns et al., 2006). 

A minimum decrease in seedling fresh and dry 

weights was observed in genotype CHING-YIN1 (Table 

III). The same genotype also maintained higher leaf area 

under salinity (Table I) and K
+
/Na

+ 
ratio (Table IV). 

Decrease in Na
+
 uptake and increase in uptake of K

+
 are 

amongst the important indicators of salt resistance 

(Marschner, 1995; Hu & Schmidhalter, 1997). The ability of 

plants to limit Na
+
 transport to shoot is important for the 

maintenance of growth rates and protection of the metabolic 

process in elongating cells from the toxic effect of Na
+
 

(Razmjoo et al., 2008). 

In conclusion, salt stress decreased the growth of 

tested rice genotypes; genotype CHING-YIN1 was more 

resistant to salinitythan other genotypes owing to decrease 

in Na
+ 

accumulation and better K
+
/Na

+
 ratio, which helped 

in growth maintenance. Seedling fresh weight, K
+
/Na

+
 ratio 

and Na
+
 contents may be used as markers in screening rice 

genotypes resistant to salt stress.  
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