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Abstract 
 

Powdery mildew is a severe wheat disease that causes heavy yield loss all around the world. In order to identify and diagnose 

its early stress characteristics, the biochemical parameters and spectral data of wheat at the early infection stage were obtained, 

and then the chlorophyll-sensitive bands of the first, second and third leaf were selected using correlation coefficient method 

and continuous wavelet transform method. By comparing the determination coefficient and selected wavelength obtained from 

the two methods, we found that: 1) at the early infection stage, second leaf had highest reflectance value, followed by first leaf, 

and third leaf had lowest value; 2) when the original, first and second order data were processed by continuous wavelet 

analysis, the obtained chlorophyll-sensitive determination coefficients were 0.624, 0.685 and 0.704, respectively, which were 

34.4, 8.4 and 9.1% higher than that obtained by correlation coefficient method, 0.280, 0.601 and 0.613, respectively. The 

selected wavelength, 885 and 1038 nm, was related with the biological characteristics of wheat leaf cell; 2188 nm was related 

with the moisture change within blade, which was reasonable. The results showed that continuous wavelet analysis is more 

promising than correlation coefficient analysis for the spectral diagnosis of powdery mildew. © 2013 Friends Science 

Publishers 
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Introduction 
 

Wheat powdery mildew is a major disease in the process of 

wheat growth in China. It can lead to the reduction of wheat 

spike and grain number, as well as blighted grain, resulting 

in a yield loss of 10−30% in general and over 50% in severe 

cases. During its prevention and treatment, excess spray of 

high-dose fungicide can pollute ecological environment. 

Thus, wheat powdery mildew has serious impacts on food 

security and farmland ecological environment in China 

(Qiao et al., 2006; Zhang et al., 2012). 

Traditional diagnosis methods for wheat disease are 

time-consuming and laborious, with shorter time from early 

warning to prevention and treatment, which directly delayed 

the best disease prevention opportunity. To solve this 

problem, the remote sensing technology rapidly developed 

due to its advantages including secure, fast, real-time and 

large-area monitor. In recent years, scientists have used 

three scales of remote sensors, ground, low-altitude and 

aerospace, to perform related studies on warning and 

forecast of crop diseases (Malthus et al., 1993; Cater et al., 

1994; Fletcher et al., 2001; Apan et al., 2004; Huang et al., 

2007). At present, the mechanism of spectral diagnostics for 

wheat crop powdery mildew has been preliminarily 

explored (Lorenzen and Jensen, 1989) and the related 

disease prediction model based on remote sensing has been 

established and applied and has achieved good economic 

and social effects (Qiao et al., 2010). However, most current 

research uses correlation analysis to select sensitive bands 

and construct the remote sensing prediction model on this 

basis. The prediction accuracy of this method is higher in 

wheat peak incidence, but is lower at early infection stage 

(Qiao et al., 2006). This is mainly related with the incidence 

characteristics of powdery mildew. That is, the disease first 

occurs at basal leaves of wheat; as the disease gradually 

progresses, it spreads upward; canopy spectral reflectance 

will have significant changes when the disease progresses to 

a certain extent. Although some methods (vegetation index 

methods, continuum removal methods and spectral 

characteristic parameters methods, etc.) have been applied 

in the spectrum diagnosis of pests and diseases, they all 

monitor the pathogenesis of disease stress and emphasize 

peak incidence (Malthus et al., 1993; Adams et al., 1999; 

Bravo & Moshou, 2003). Therefore, how to use remote 

sensing technology to improve the prediction at early 

infection stages and thus, to provide sufficient time for 
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effective prevention and treatment of diseases is the difficult 

point and the purpose of our study. 

Continuous wavelet analysis is a powerful tool for 

processing of spectral reflectance signal, and is commonly 

used in the extraction study for leaf biochemical parameter 

concentrations (Blackburn, 2007; Cheng et al., 2010). It 

uses reflectance spectrum of leaf spectral to perform 

continuous wavelet transform, decomposes the spectral 

information into multiple scales of signal, then parses the 

characteristics of each scale signal, and finally indicates the 

differences of various biochemical components of leaves. 

Moreover, continuous wavelet analysis is used to study the 

chlorophyll and water content of leaves, indicating that this 

method has certain advantages over traditional methods and 

could get better results (Blackburn and Ferwerda, 2008; 

Cheng et al., 2011). 

In summary, this study tried to use correlation 

coefficient method and continuous wavelet transform 

method to select the sensitive bands from first, second and 

third leaves of wheat infected with powdery mildew. 

Comparison of determination coefficient and selected 

wavelength showed advantages of continuous wavelet 

analysis in disease diagnosis; in particularly, it provides a 

theoretical exploration for remote monitoring of wheat 

powdery mildew at early infection stages. 
 

Materials and Methods 
 

Experimental Design 

 

The experiments were performed in February to April 2011 

at the experimental farm of Beijing Academy of Agriculture 

and Forestry Sciences (39.93°N, 116.27°E). Experimental 

wheat was Jingdong 12, and managed with conventional 

fertilizer and water. Powdery mildew infection experiments 

were carried out by artificial inoculation. The inoculated 

bacteria were first cultured in pots in a greenhouse. When 

wheat seedlings got disease, they were inoculated to 

experimental area at the end of March. 

 

Division of Stress Degree 

 

This study focused on the impacts of powdery mildew on 

leaf spectrum and diagnosis method at early growth stage of 

wheat. Therefore, related studies were performed at the 

flagging stage of infection. At this point, the lower leaves of 

wheat showed obvious disease characteristics, and the upper 

leaves only had mild disease. Wheat disease level was 

divided referring to the plant pathology criteria (Agrios, 

2004). At single leaf scale, it was divided into six levels 

according to the lesion percentage of total leaf area: level 0 

(0%), level 1(<5%), level 2(<15%), level 3(<30%), level 

4(<40%) and level 5(>=50%).Among them, level 1 and 

level 2 were referred to as mild disease, level 4 and level 5 

were referred to as severe disease and level 3 was between 

mild and severe diseases. In order to provide theoretical 

support to the next layer canopy disease diagnosis, the first, 

second and third leaves were collected as experimental 

objects. Five samples were collected from each infection 

level, and totally 75 leaf samples were collected. 

 

Data Collection and Processing 

 

Leaf spectrum was determined by ASD spectroradiometer 

measurement (ASD FieldSpec
®
 FR 2500, ASD Inc., 

Boulder, CO, USA). Five positions were measured on each 

leaf and five spectra were measured on each position. An 

average of 25 spectra was single leaf spectrum, and there 

were 75 leaf spectra in total. Reference whiteboard 

correction was performed before and after spectrometry, and 

leaf reflectance conversion referred to the methods 

described by Pu (2009). Furthermore, in order to eliminate 

the influence of other factors in experimental environment, 

we performed first and second order differential on the 

original reflectance spectra referring to the specific formula 

reported by Qiao et al. (2010). 

The wavelength range of spectral data acquisition 

equipment, ASD spectroradiometer, was 350−2500 nm, the 

spectral resolution was 3 nm at 700 nm and 10 nm at 1500 

and 2100 nm; the sampling interval was 1.4 nm at 

350−1000 nm and 2 nm at 1000−2500 nm. To facilitate the 

analysis and processing, spectral intervals were all 1 nm, 

and the study scope was 400−2500 nm. 

 

Biochemical Parameters Measurement 

 

Chlorophyll content was measured using Dualex4 plant 

nitrogen balance index analysis instrument (Dualex
®
4, 

Force-A, French) as shown in Fig. 2. Three positions were 

measured and the average value represented the relative 

chlorophyll content for single leaf. This instrument can 

detect plant nitrogen deficit at early stage. Therefore, it has 

more advantages on probing plant stress compared to other 

instruments (Tremblay et al., 2011). 

Methods: The correlation analysis is used to study the 

potential dependencies among phenomena, and discuss the 

direction and relevance for specific phenomena with 

dependencies. It is a statistical method to study the 

correlation between random variables (Freedman, 2005). 

Continuous wavelet transform (Eq. 1) is usually used 

to decompose a continuous function of time into wavelet. 

Compared to the Fourier transform, the difference of 

continuous wavelet transform is that it has a good time and 

frequency location when constructing time and frequency 

representation from processed signals (Cheng et al., 2010). 
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Where, ψ(t) is mother wavelet, a is an arbitrary positive 

real number, which represents the control of scale, and b is 

any real number, which represents the control of position. 
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Results 
 

Different Levels of Leaf Spectral Characteristics under 

Disease Stress 

 

When performing remote sensing monitoring on wheat 

powdery mildew canopy, the wind, light, background 

objects in external environment as well as the canopy 

structure of wheat itself could influence spectrum. In order 

to guarantee the accuracy of research, we chose single leaf, 

which had minimal impact factors, as experimental object. 

We first analyzed the spectral characteristics of leaves at 

different levels of disease, then used correlation coefficients 

and continuous wavelet analysis method to identify the 

chlorophyll-sensitive spectral band or internal and thus 

explore and resolve the construction of remote sensing 

model for characteristic leaves at different levels of disease. 

Fig. 3 was the original reflectance spectra of the infected 

leaves under different stress levels. 

As shown in Fig. 3, the reflectance of infected leaves 

at various stress levels had significant difference in the 

550−700 nm and 750−1250 nm spectral region. At 550−700 

nm, the reflectance value of normal leaf (level 0) in Red 

Valley (670 nm) had minimal value, followed by mild 

leaves (level 1 and 2) and level 3 and severe leaves (level 4 

and 5) had the highest value. They exhibited apparent three 

gradients, which were consistent with previous studies in 

other crop diseases. At 750−1250 nm, mild leaves had 

highest reflectance value, severe leaves (level 4 and 5) had 

lowest reflectance value, and normal and level 3 leaves had 

similar reflectance value. This indicates that when crops 

suffer from disease stress, the chlorophyll within leaves will 

change. This mainly occurs in visible and near infrared 

ranges. Especially near the Red Valley of visible light (670 

nm), healthy leaves had lowest spectral reflectance value, 

and the reflectance value of disease leaves increased 

gradually as stress level enhanced. In the near infrared 

range, normal and severe leaves had great differences, while 

mild leaves had similar or higher than normal leaves. This is 

a self-regulation mechanism of crop to resist disease. That 

is, after infection, cell respiration enhances and chlorophyll 

activity increases, making the spectrum above or near 

normal. 

On this basis, we performed comparative analysis on 

leaf spectral reflectance values for different leaf positions at 

leaves with same disease level and the results were shown in 

Fig. 4. The figure showed that the second leaf had highest 

reflectance value, followed by first leaf, and third leaf had 

lowest value. Comparative analysis revealed that the leaf 

reflectance values of different leaf positions at six levels all 

exhibited the trend as shown in Fig. 4. This is in line with 

the infection pattern at early growth stage of wheat growth 

(flagging stage). That is, incidence is from lower leaves, and 

third leaf had most severe disease; first leaf is new leaf with 

relatively weaker resistance, and it had mild disease; second 

leaf is fully developed with strong complete resistance, and 

it had mildest disease. This is also the mechanism of using 

spectrum to explore early disease prevention. 

 

Chlorophyll-sensitive Band Selection using Correlation 

Analysis Method 

 

When crops suffer from disease stress, accurate selection of 

characteristic sensitive bands of crop stress state is required 

to build disease prediction model. Based on the division of 

leaf position for disease leaves, the correlation analysis of 

leaf spectral reflectance and chlorophyll content of first, 

second and third leaves were shown in Fig. 5, which 

revealed the distribution of chlorophyll-sensitive bands. The 

chlorophyll-sensitive bands of first, second and third leaves 

were mainly in the range of 500−750 nm, displaying a 

highly significant negative correlation, with the absolute r 

 
 

Fig. 1: Disease leaves of different levels 
 

 
 

Fig. 2: Schematic diagram of Dualex4 
 

 
 

Fig. 3: Spectral characteristics under different stress level 
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value of higher than 0.4 (P>0.01); in addition, first leaf 

exhibited a significant correlation at 751−1300 nm, with the 

correlation coefficient r of near 0.4; third leaf showed a 

highly significant correlation at 1300−2500 nm, with the 

maximum of about 0.7; for second leaf, with the exception 

of 500−750 nm range, the leaf spectral reflectance and 

chlorophyll content had poor correlation in other ranges, 

suggesting the poor diagnosis outcome of correlation 

analysis on the chlorophyll of mildly infected leaves. For 

further analysis, we performed first and second order 

differential on original spectra, and used correlation analysis 

to identify sensitive range. As shown in Fig. 6, with the 

differential order increased, the noise of spectral signal was 

amplified. Here we only listed the correlation coefficient 

range with stable signal. 

Fig. 6a showed that at different leaf positions, the leaf 

reflectance spectra and chlorophyll-sensitive bands were 

concentrated at 500−780 nm i.e., green, red and near 

infrared bands, which are the optimal bands for spectrum 

diagnosis of crop diseases. In addition, the correlation 

coefficient at near 550 nm reached maximum. The r value 

was around 0.8 for first and third leaves, and was only 

around 0.6 for second leave. In Fig. 6b, the red band was 

most sensitive to chlorophyll. The highest correlation 

coefficient of leaf spectrum and chlorophyll at different leaf 

positions was near 0.6, and the r value of second leaf was 

lower than first and third leaves. For above results, the first 

order differential was better than the second order 

differential. 

 

Chlorophyll-sensitive Band Selection using Continuous 

Wavelet Analysis 

 

Accurate selection of characteristic sensitive bands of crop 

stress state is required to build disease prediction model. 

Previous studies used characteristic parameters, vegetation 

index, continuum removal, normalization processing and 

 
 

Fig. 4: Spectral reflectance of leaves from different leaf 

positions at leaves with same disease level 
 

 
 

Fig. 5: Correlation analysis of leaf spectral reflectance and 

chlorophyll content of leaves from different leaf positions 

 
 

Fig. 6: Correlation coefficient of spectra and chlorophyll 

content of leaves from different leaf positions 
 

 
 

Fig. 7: Determination coefficients of spectra and 

chlorophyll content of leaves from different leaf positions 

using continuous wavelet analysis 
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other methods, but these methods are mostly used for the 

prediction of peak incidence. In order to identify methods to 

reflect the characteristics of disease crop at early onset, this 

study attempted to use the continuous wavelet transform 

method to decompose the spectrum into 10 scales of signal 

and to analyze the sensitivity of this method to disease stress.  

A histogram of original spectra of first, second and 

third leaves and chlorophyll-sensitive bands have been 

shown in Fig. 7. The figure showed that the chlorophyll-

sensitive bands of first leaf were mainly distributed near 450 

nm, 550 and 1100 nm, with the signals at 2-, 3- and 4-scale, 

and the determination coefficient of up to 0.78. The second 

leaf exhibited significant multiple correlation relationship 

near 1000 nm, with a determination coefficient of up to 

0.624. The second leaf also exhibited a significant multiple 

correlation relationship, mainly concentrated at the 550 nm 

and 750−850 nm band ranges of 4-, 5- and 6-scale, with the 

highest determination coefficient of 0.83. The 

decomposition scale with high leaf spectral reflectance and 

chlorophyll content determination coefficient at different 

leaf positions was distributed at 2 to 6 scales, indicating that 

further decomposition of spectral signal can effectively 

improve the identification of chlorophyll-sensitive bands. In 

addition, compared to the traditional correlation coefficient 

method, the determination coefficient values at different leaf 

positions had improved significantly. 

On the basis of the continuous wavelet analysis on 

original spectrum, we also carried out first and second order 

differential wavelet analysis. Since first and third leaves had 

better performance in the original spectrum analysis, they 

can be considered as obvious stage of disease stress and 

second leaf can be considered as early stage of infection. To 

illustrate the advantage of this method on the sensitive band 

selection at early stage, here only continuous wavelet 

transform figure of second leaf was listed. 

The figure showed that with an increase in differential 

order, the spectral signal gradually weakened and the scope 

of chlorophyll-sensitive band gradually became narrow. At 

second order differential, only a single band left. This was 

consistent with the first and second order differential results 

at correlation coefficient analysis, i.e., most were noise 

signal and the effective signal range was getting smaller. 

However, the determination coefficient for second leaf was 

0.624 originally, 0.685 at first order and 0.704 at second 

order; it effectively improved the chlorophyll-related 

determination coefficient. Selected wavelength included 

1038 nm, 2188 nm and 885 nm, mainly distributed in the 

near infrared and mid-infrared ranges. Wavelets of 1038 and 

885 nm were primarily related with the biological 

characteristics of the wheat; 2188 nm was primarily related 

with internal moisture change of blades. Therefore, there 

was a mechanism for selected wavelengths, and then the 

calculated determination coefficient was reliable. 

 

Discussion 
 

On the basis of disease data analysis using two methods, this 

study listed the determination coefficient and selected 

wavelength to further explain the advantages of continuous 

wavelet analysis. As shown in Table 1, for the original 

spectrum, continuous wavelet analysis was more effective 

than correlation coefficient analysis in improving the 

determination coefficient for chlorophyll prediction. Among 

them, first leaf improved 10%, and second and third leaves 

improved over 30%. Sensitive bands selected by continuous 

wavelet analysis were concentrated in the blue and near-

infrared ranges, and the bands selected by correlation 

coefficient method were concentrated in red range. 

Although blue, green, red and near-infrared bands are all 

sensitive ranges to reflect the characteristics of chlorophyll 

stress, chlorophyll changes after disease stress did not rely 

solely on changes of a single band range, but rather on the 

Table 1: Determination coefficient of chlorophyll content of leaves from different leaf positions and the 

selected wavelength (n=75) 
 

Spectra Leaf position Correlation coefficient Wavelet analysis 

Original spectra The first leaf y=-611.1x+97.96       R2=0.606 (636 nm) y=13986x+47.78          R2=0.781(475 nm) 
The second leaf y=-73.96x+53.34       R2=0.280 (705 nm) y=7582x+62.97 1038   R2=0.624(1038 nm) 

The third leaf y=-239.0x+58.62       R2=0.561 (652 nm) y=19431x+41.78          R2=0.828(484) 

First order differential The first leaf y=-10993x+44.63      R2=0.671 (553 nm) y=63392x+12.59          R2= 0.681(756 nm) 
The second leaf y=-94839x+36.60      R2=0.601 (883 nm) y=-86100x +43.29        R2=0.685(2188 nm) 

The third leaf y=-11985x+32.88      R2=0.755 (572 nm) y = 69987x + 43.03      R2=0.796(2317 nm) 

Second order differential The first leaf y=-28117x+18.80      R2=0.625 (750 nm) y=7974.x+45.09           R2=0.826(645 nm) 
The second leaf y=51850x+31.73     R2=0.613 (1444 nm) y=9986x+17.02            R2=0.704(885 nm) 

The third leaf y=88450x+27.38      R2=0.633 (701 nm) y=10246.x+19.07         R2=0.852(1615 nm) 

 

 
 

Fig. 8: Coefficients of determination of spectra and 

chlorophyll content of second leaf using continuous 

wavelet analysis 
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results of synergistic changes of many intervals. Therefore, 

the multi-band can suggest that continuous wavelet analysis 

is more sensitive to chlorophyll concentration change under 

disease stress, as also proved by Zhang et al. (2012). 

For the processing of first and second order 

differential, the determination coefficient obtained by 

continuous wavelet analysis were all higher than correlation 

coefficient, but it needs to be further proved whether this 

method can be used together with the first and second order 

differential. Because some selected wavelengths were at 

1615 nm, 2188 nm and 2317 nm, which are far away from 

the traditional chlorophyll-sensitive range (Blackburn, 2007; 

Cheng et al., 2010). Related information indicated that these 

bands mainly reflect the plant water characteristics. When 

plants suffer from disease stress, besides chlorophyll, there 

will be significant changes in water (Huang et al., 2004; 

Jiang et al., 2007). Therefore, the wavelength ranges 

selected by continuous wavelet analysis are reasonable, but 

the stability requires in-depth studies in different diseases. 

Wheat powdery mildew incidence is characterized by 

bottom-up, and it is difficult to diagnose at early onset using 

optical remote sensing (Lorenzen & Jensen, 1989; Qiao et 

al., 2006). At present, researchers pay less attention to this 

issue (Qiao et al., 2010). This study attempts to investigate 

the diagnosis mechanism at early disease stage in single leaf 

scale in order to provide theoretical support to the early 

remote sensing monitoring of powdery mildew at canopy 

level. According to the sample characteristics, third leaf had 

highest infection level, followed by first leaf, and second 

leaf had lowest level. The reasons include 1) the 

characteristics of incidence for bottom-up disease; 2) second 

leaf is functional leaf and is stronger than first and third 

leaves, resulting in the above sequence. Therefore, the 

second leaf can be considered as infected at lightest level. 

Correlation coefficient analysis revealed the existence of 

lowest determination coefficient, R
2
 = 0.280 (705 nm), 

indicating that it was difficult to predict chlorophyll in 

second leaf. When using the continuous wavelet analysis, R
2
 

was 0.624 (1038 nm), and the determination coefficient 

increased by 34.4%. The processing results of first and 

second order differential both showed that continuous 

wavelet analysis effectively improved the determination 

coefficient (R
2
 were 0.685 and 0.704). This suggested that 

continuous wavelet analysis had better results when dealing 

with leaves with insignificant disease characteristics. 

In conclusion, after processing original, first order and 

second order data with continuous wavelet analysis, the 

derived determination coefficients for the chlorophyll-

sensitive bands were 0.624, 0.685 and 0.704, respectively, 

which improved by 34.4%, 8.4% and 9.1% as compared to 

the values obtained by correlation coefficient, 0.280, 0.601 

and 0.613. This proved that the method has a high 

application potential, especially for representing early 

disease characteristics. These results, however, included only 

75 samples obtained from a single disease, whether some 

results were caused by noise and whether it can reasonably 

explain the disease changes need to be applied and proved 

using data from different diseases, crops and growth stages. 
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