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Abstract 
 

To enhance the reliability of remote sensing evaluation model of leaf nitrogen concentration (LNC) in wheat, this paper 

analyzed the relationships of LNC at critical stages with the combinations of two vegetation indexes obtained from HJ-CCD 

images. The combined models were compared with the one-fold vegetation index model. The results demonstrated that N 

(SIPI, EVI), the normalization for SIPI and EVI, was practical to evaluate LNC at elongation stage with R
2
 and RMSE of 0.69 

and 0.34, respectively, and superior to the one-fold vegetation index model with accuracy increased by 9.9%. D (PSRI, DVI), 

difference combination for PSRI and DVI, was practical to evaluate LNC at booting stage with R
2
 and RMSE of 0.71 and 

0.18, respectively and superior to the one fold vegetation index model with increased accuracy by 15.2%. Normalization 

combination for SIPI and PSRI, namely N (SIPI, PSRI), was practical to evaluate LNC at anthesis with R
2
 and RMSE of0.89 

and 0.31, respectively and superior to the one fold vegetation index model with accuracy increased by 14.7%. In summary, N 

(SIPI, EVI), D (PSRI, DVI) and N (SIPI, PSRI) are potential indicators of LNC at different stages and can be a new method 

for more accurate evaluation of wheat growth. © 2018 Friends Science Publishers 
 

Keywords: HJ-CCD images; Leaf nitrogen concentration; Vegetation indexes; Evaluation model; Wheat 
 

Introduction 

 

Leaf nitrogen concentration (LNC) is used as a reference to 

measure growth conditions, output and quality of crop 

(Serrano et al., 2002; Daniela et al., 2009; Inoue et al., 

2012). How to acquire nitrogen concentration of crops 

accurately had become the hotspot of remote sensing crop 

monitoring research (Pinter Jr et al., 2003; Ree, 2006; 
Martin et al., 2008). Many experts and scholars had 

explored crops LNC based on different remote sensing data 

sources and put forward a variety of estimation methods of 

crops. The most common method of the nitrogen 

concentration was to derive spectral indexes by combining 

two or more characteristic wavebands into a simple ratio or 

into a more complicated formula based on algorithms and 

N-related plant physiological significance such as leaf 

nitrogen concentration (Hatfield et al., 2008; Ollinger, 2011; 
Miphokasap et al., 2012). Muharam et al. (2015b) 
developed an estimation model of canopy nitrogen 

concentration using field imaging spectroscopy. A remote 

sensing estimation model of crop LNC had been established 

by combining ground cover information and using canopy 

reflectance spectrum (Chen et al., 2010; Muharam et al., 

2015a). Based on the near-infrared monitoring model of 

wheat LNC, it was discovered that the monitoring model 

based on wavelet neural network (WNN) was better than 

those based on partial least squares (PLS) and back-

propagation neural networks (BPNN) (Jacobi et al., 2006). 

Most previous research focused on regression analysis of 

single vegetation index and agronomic parameter or a series 

of algorithms based on single vegetation index (Tarpley et 

al., 2000; Morón et al., 2007; Tan et al., 2011; Tuia et al., 

2011; Bagheri et al., 2013; Boegh et al., 2013; Muharam et 

al., 2015b). Researchers realized dynamic monitoring of 

crop LNC based on new characteristic parameters (e.g., 

slope and included angle) which were extracted from the 

hyperspectral reflectance curve of visible light-near infrared 

region using field investigation data (Daughtry et al., 2000; 

Xu et al., 2009). By analyzing the optimal weighted 

parameter composition, some parameters had the strongest 

response capability to spectral information of crop LNC, 

conducive to enhancing monitoring stability and estimation 

accuracy. In addition, some researches showed that the 

combination of red-edge wavelengths with very near 

infrared wavelengths provided good precision and accuracy 

for predicting LNC (Tarpley et al., 2000). Daughtry et al. 

(2000) proposed a vegetation index named Modified 

Chlorophyll Absorption Ratio Index (MCARI) and applied 

it for canopy chlorophyll and nitrogen measurements. Ryu 

et al. (2011) established a multi-year PLS regression model 

for quantifying nitrogen content using hyperspectral data, 

and found that accuracy of the multi-year PLS regression 
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models was better than the multi-year models based on 

multiple linear regression. 

This research aimed to put forward a new method of 

further improving the accuracy of remote sensing evaluation 

model of wheat LNC at critical stages, examine the effects 

of employing the combinations of two vegetation indexes to 

remotely evaluate LNC, and establish the quantitative 

evaluation models with high accuracy based on HJ-CCD 

images. Sensitive vegetation indexes or their combinations 

were adopted to analyze LNC and multispectral vegetation 

indexes at critical stages. The authors focused on the 

quantitative relationships of LNC with their differences, 

ratios and normalized combinations of two vegetation 

indexes obtained by HJ-CCD images. Based on the 

combinations of sensitive vegetation indexes, the evaluation 

of LNC was realized, which provides a new method for 

accurate crop cultivation and real-time acquisition of crop 

growth information. 

 

Materials and Methods 
 

Study Areas and Field Sampling 

 

Test 1: The test was conducted in 2015 in Taixing, Jiangyan, 

Xinghua, and Dafeng in Jiangsu Province, China. In each 

study area, 15‒20 sampling sites were set A total of 66 

sampling points were designed. 

Test 2: The test was conducted in 2016 in Taixin, 

Jiangyan, Xinghua, and Gaoyou in Jiangsu Province, China. 

In each study area, 30 sampling sites were set A total of 120 

sampling points were designed. 

Test 3: The test was conducted in 2017 in Yizheng, 

Jiangyan, Xinghua, Taixing, and Dafeng in Jiangsu 

Province, China. In each study area, 20‒25 sampling sites 

were set A total of 114 sampling points were designed.  

The study was carried out in the midland of Jiangsu 

Province (119°12′ to 120°26′ E, 32°2′ to 33°16′ N), which 

was an important wheat producing area in Jiangsu. The 

terrain is flat in this area. It is mainly affected by the 

subtropical monsoon climate, with an average annual 

rainfall of about 1000 mm and annual average sunshine of 

about 2,200 h. Rice was the dominant crop in study areas. 

 

Laboratory and Field Measurements 

 

Sampling sites in Section 2.1 were uniformly distributed. 

For each sampling sites, location information was acquired 

by handheld GPS instrument made in Trimble Company. 

Test stages including elongation, booting, and flowering 

stages were determined by actual field investigation. Field 

survey showed that there was no significant difference in 

wheat growing conditions between 2015 and 2017 at the 

same periods. The sampling points were all set in large-area 

field areas with wheat uniform growth and the well 

managed fields. The sampling points were set at a 

distance of at least 60 m from the boundary of the field. 

The sampling points set in the first period were applied to 

all subsequent periods. In the center of the experimental area, 

four rows (50 cm) of uniform wheat were selected. At the 

same time, carried out GPS positioning and recorded 

geographical information. 

All collected samples were sent to laboratory timely to 

test LNC. 15‒20 plants were collected at all sampling 

sites during different periods of wheat (elongation, 

booting and flowering stages). Leaf samples were dried, 

grinded, screened and dried again to test wheat LNC by 

Kjeldahl method. 
 

Remote Sensing Image Acquisition and Processing 
 

The remote sensing images used in this study were HJ-CCD 

images obtained from Resource Satellite Application Center, 

China. 9 satellite image acquisition dates were elongation 

stage (20150311, 20160308 and 20170309), booting stage 

(20150413, 20160411 and 20170412) and flowering stage 

(20150425, 20160503 and 20170428). 

ENVI5.0 software was used to process HJ-CCD 

images. Firstly, the rough correction of remote sensing 

images was performed based on the topographic maps of 

Jiangsu Province (scale: 1:100,000). Secondly, the images 

were geometrically fine-tuned based on the ground control 

points measured by the GPS. Finally, atmospheric 

corrections and reflectivity conversions were performed 

using an empirical linear transformation. 

Representative water body of the study areas was used 

as a target for low reflectivity calibration and open cement 

pavement was used as a target for high reflectivity 

calibration. Satellite image (HJ-CCD) scaling was 

performed by manual calibration. The digital value (DN) 

images were converted to radiation images based on 

absolute calibration coefficient based on the following 

formula: 
 

L=DN/a+L0                                                                (1) 
 

Here, L represented radiance, a was gains of absolute 

calibration coefficient and L0was offset. L unit was 

W.m
−2

.sr
−1

.μm
−1

. 
 

Remote Sensing Vegetation Indexes 
 

In this study, commonly used vegetation indexes related to 

LNC based from the literature were selected. We used 

ENVI 5.0 software to extract the spectral reflectance of the 

GPS-located sampling points. Next, combined with the 

existing satellite remote sensing index algorithm, the 

vegetation indexes were computed according to the 

formulas (Table 1). 
 

Combinations of Different Remote Sensing Vegetation 

Indexes 
 

Eight common remote sensing vegetation indexes: 

NDVI, NRI, GNDVI, SIPI, PSRI, DVI, RVI and EVI 
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were used in present study. They were matched by 

differential calculations, ratio calculations, and 

normalization processing. Taking A and B as examples, 

the combinations were defined: D (A, B) =A-B, R (A, B) 

=A/B and N (A, B) = (A-B)/(A+B), respectively 

corresponding to difference, ratio and normalization 

combinations. Therefore, a total of 84 diverse and 

credible combinations were obtained. 

 

Data Analysis and Utilization 

 

We used SPSS18.0 to analyze the correlation between 

different vegetation indexes and the combinations and LNC 

at different stages (elongation, booting and flowering stages). 

Based on the principle of strongest correlation, a variety of 

wheat LNC evaluation models were established during the 

main growth periods (exponential, linear, polynomial, 

logarithmic and power correlation models). Consequently, 

the relations diagram between predicted and measured LNC 

values was drawn to evaluate the established model. 

Accuracy of the remote sensing evaluation model was 

evaluated by degree of fitting (R
2
) and root mean square 

error (RMSE). Equation (2) was used to calculate RMSE. In 

addition, the spatial grade map of LNC distribution at 

critical stages was drawn. 
 

 



n

i

ii yy
n

RMSE
1

2
ˆ

1

(2) 
 

Here, iy
 and 

iŷ represented observed values and 

simulated values, respectively; n  was number of samples. 

 

Results 

 

Relationships of Vegetation Indexes and the 

Combinations with Wheat LNC 

 

The normalization combination of SIPI and EVI, namely 

N (SIPI, EVI), had the highest correlation coefficient at 

the elongation stage in the combinations, and was better 

than one fold vegetation index (Table 2 and 3). N (SIPI, 

EVI) had stronger correlation (r=-0.78) than R (SIPI, 

EVI) and D (SIPI, EVI). Therefore, LNC inversion by N 

(SIPI, EVI) was practical at elongation stage. At booting 

stage, D (PSRI, DVI) had stronger correlation (r=-0.72) 

with LNC than R (GNDVI, DVI) and N (GNDVI, DVI), 

which were better than one fold vegetation indexes. D 

(PSRI, DVI) showed the strongest correlation (r=-0.72), 

indicating that LNC inversion based on D (PSRI, DVI) 

at the booting stage was practical. At the flowering stage, 

N (SIPI, PSRI) showed the strongest correlation (r=0.81). 

Therefore, the N (SIPI, PSRI) model was used to 

evaluate LNC of wheat at the flowering stage for the 

principle of simplicity. 

Establishment of Wheat LNC Model Based on 

Vegetation Index 
 

Based on the strong correlation principle and above analysis 

results, N (SIPI, EVI), D (PSRI, DVI) and N (SIPI, PSRI) 

were chosen to evaluate LNC at elongation, booting and 

flowering stages, respectively. Then, the combined 

vegetation indexes were used as independent variables and 

LNC was used as the dependent variable to establish remote 

sensing evaluation models of wheat LNC by exponential, 

linear, polynomial, power and logarithmic modeling 

methods (Table 4). 

The wheat LNC remote sensing evaluation model with 

the highest R
2
 value was measured at the elongation, 

booting and the flowering stages (Fig. 1). More precisely, 

the evaluation model of wheat LNC at elongation stage was 

established by polynomial method (R
2
=0.65). Although, the 

evaluation models of wheat LNC at booting stage 

established by polynomial (R
2
=0.52) and linear (R

2
=0.52) 

modeling methods were similar, the linear model was 

simpler and applied in this study. The evaluation model of 

wheat LNC at flowering stage was established by linear 

method (R
2
=0.45). 

 

Assessing the Combined Evaluation Models of Wheat 

LNC 
 

To evaluate accuracy of the combined evaluation models, 

the relations between predicted and measured LNC values 

were quantitatively analyzed with 66 samples observed at 

elongation stage, booting stage and flowering stage in 2015. 

The three combined evaluation models were compared with 

corresponding one fold vegetation index models (Fig. 2). 

It could be seen from comparison (elongation stage, 

booting stage and flowering stage) that the predicted LNC 

by the N (SIPI, EVI) evaluation model was highly 

correlated with measured LNC (R
2
=0.69, RMSE=0.34). It 

was superior to the one fold vegetation index evaluation 

model and achieves 9.9% higher accuracy. Therefore, N 

(SIPI, EVI) was applicable to evaluate wheat LNC at 

elongation stage. Similarly, the D (PSRI, DVI) evaluation 

modeling showed R
2
=0.71, RMSE=0.18 and growth 

accuracy =15.2%, indicating its applicability to evaluate 

wheat LNC at booting stage. At flowering, the N (SIPI, 

PSRI) model was more useful than one fold vegetation 

index models with R
2
=0.89, RMSE=0.31 and growth 

accuracy = 14.7%. In summary, the combined model based 

on two vegetation indexes, used to evaluate LNC in wheat, 

could promote the evaluation accuracy, so that it was 

practical to provide a new application method for accurately 

evaluating crop growth in future. 
 

Mapping Spatial Distribution of Wheat LNC 
 

According to Table 4, HJ-CCD images in 2017 and the 

formulas in Table 1, numerical values of sensitive variables 

were calculated correctly and effectively one by one. 

http://www.baidu.com/link?url=OuN_eaZ_AGKIm1VJq_ro3eFnVBdp4rte-_R6gdMaz-IzzSb4_wPB2sbEJLwct5DCy4fWl0L6MhBBnUS-V71WWelQXslYvoqdVcDucWaeUcq
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After creating mask images, sampling sites were positioned 

with GPS instrument and wheat-planting areas was 

classified by using supervised method. Field correction was 

performed to ensure classification accuracy of wheat-

planting areas. Overlying the topographic vector maps of 

Jiangsu Province, the remote sensing evaluation maps of 

wheat LNC spatial distribution was drawn with 

ArcGIS10.2 software (Fig. 3). 

Table 1: Common satellite remote sensing vegetation indexes 

 
Vegetation index Calculation formula 

Normalized difference vegetation index (NDVI) NDVI=(B4-B3)/(B4+B3) 

Nitrogen reflectance index (NRI) NRI=(B2-B3)/(B2+B3) 
Green normalized difference vegetation index (GNDVI) GNDVI=(B4-B2)/(B4+B2) 

Structure intensive pigment index (SIPI) SIPI=(B4-B1)/(B4+B1) 

Plant senescence reflectance index (PSRI) PSRI=(B3-B1)/ B4 
Difference vegetation index (DVI) DVI= B4-B3 

Ratio vegetation index (RVI) RVI= B4/B3 

Enhanced vegetation index (EVI) EVI= 2.5*( B4-B3 ) /(B4+6*B3-7.5*B2+1) 

Note: B1, B2, B3 and B4 denoted spectrum reflectance at blue, green, red and near infrared bands, respectively. The same as below 

 

Table 2: Correlation between vegetation indexes and LNC of wheat at critical stages 

 
Vegetation indexes NDVI NRI GNDVI SIPI PSRI DVI RVI EVI 

Elongation Stage 0.40** 0.43** -0.27** -0.18* -0.34** 0.34** 0.43** 0.70** 

Boot stage 0.51** 0.22** -0.05 0.21* -0.14 0.60** 0.41** 0.30** 

Flowering stage 0.31** 0.09 -0.04 0.67** -0.41** 0.18* 0.22** -0.18** 

Note: *: P <0.05; **: P <0.01. The same as below 

 

 
 

Fig. 1: Remote sensing evaluation model of wheat LNC at key stages 

 

 
 

Fig. 2: Reliability of the evaluation models of wheat LNC at key stages 
SVI: Single vegetation index; CVI: Combination of vegetation index 
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Wheat LNC in middle Jiangsu Province was 

mainly 2.5%–4.5% at elongation stage, 2%–3% at 

booting stage and about 2.5% at flowering stage, 

showing a declining trend from the elongation -booting -

flowering stages (Fig. 3). These results indicated 

dynamic nutrient (e.g., nitrogen) circulation in the wheat 

growth process. Nitrogen flowed to wheat grains as they 

became increasingly mature. Moreover, maturity of 

wheat grains could be predicted by changes or difference 

of LNC at different stages, thus enabling to provide a 

support to determination of wheat harvest. 

Discussion 

 

Some researchers preferred to evaluate crop growth 

condition by multiple parameters or combination indicators 

(Kawamura et al., 2005; Tuia et al., 2011). However, few 

researches on multi-parameter remote sensing evaluations 

discussed the correlations among different parameters and 

internal biological relationships. Most of them concentrated 

in one fold period, which could not reflect dynamic changes 

of parameters. Based on these problems, this study analyzed 

dynamic evaluations of wheat LNC with HJ-CCD images, 

Table 3: Correlation between combinations of vegetation indexes and wheat LNC at critical stages 

 
Vegetation indexes combinations Difference combination Ratio combination Normalization combination 

(NDVI, NRI) (0.19*, 0.45**, 0.31**) (-0.42**, -0.15*, -0.02) (-0.08, 0.0138, 0.08) 
(NDVI, GNDVI) (0.44**, 0.45**, 0.22**) (0.44**, 0.56**, 0.21**) (0.47**, 0.41**, 0.22**) 

(NDVI, SIPI) (0.47**, 0.36**, 0.16*) (0.46**, 0.47**, 0.17*) (0.52**, 0.34**, 0.17*) 

(NDVI, PSRI) (0.45**, 0.50**, 0.34**) (0.25**, 0.50**, -0.01) (0.47**, 0.38**, 0.40**) 
(NDVI, DVI) (-0.34**, -0.70**, -0.18*) (0.14*, -0.07, 0.04) (0.14*, -0.03, 0.04) 

(NDVI, RVI) (-0.42**, -0.38**, -0.15*) (-0.23**, -0.01, 0.03) (0.03, 0.01, 0.05) 

(NDVI, EVI) (-0.70**, -0.20*, 0.23**) (-0.62**, -0.03, 0.20**) (-0.64**, -0.05, 0.23**) 
(NRI, GNDVI) (0.42**, 0.19*, 0.06) (0.40**, 0.14*, 0.12) (0.38**, 0.23**, 0.12) 

(NRI, SIPI) (0.39**, 0.01, -0.15*) (0.36**, 0.25**, 0.03) (0.32**, 0.30**, 0.04) 

(NRI, PSRI) (0.47**, 0.23**, 0.29**) (0.25**, 0.07, -0.01) (-0.09, 0.02, 0.01) 
(NRI, DVI) (-0.34**, -0.72**, -0.18*) (0.50**, 0.47**, -0.02) (0.54**, 0.41**, -0.02) 

(NRI, RVI) (-0.41**, -0.40**, -0.21**) (0.59**, 0.36**, -0.02) (0.59**, 0.33**, -0.02) 

(NRI, EVI) (-0.70**, -0.26**, 0.18**) (0.65**, 0.23**, 0.13*) (-0.10, -0.02, 0.14*) 
(GNDVI, SIPI) (-0.03, -0.23**, -0.21**) (-0.02, -0.32**, -0.20**) (-0.03, -0.23**, -0.20**) 

(GNDVI, PSRI) (0.01, 0.01, 0.02) (0.13, 0.05, -0.01) (0.20**, 0.10, 0.40**) 

(GNDVI, DVI) (-0.34**, -0.70**, -0.18*) (-0.38**, -0.69**, -0.20**) (-0.43**, -0.50**, -0.20**) 

(GNDVI, RVI) (-0.41**, -0.41**, -0.24**) (-0.48**, -0.48**, -0.23**) (-0.37**, -0.37**, -0.24**) 

(GNDVI, EVI) (-0.71**, -0.27**, 0.18*) (-0.71**, -0.26**, 0.09) (-0.76**, -0.25**, 0.12) 

(SIPI, PSRI) (0.03, 0.24**, 0.29**) (0.14*, 0.27**, -0.22) (0.62**, 0.46**, 0.81**) 
(SIPI, DVI) (-0.34**, -0.70**, -0.18*) (-0.39**, -0.57**, -0.09) (-0.45**, -0.40**, -0.09) 

(SIPI, RVI) (-0.45**, -0.40**, -0.20**) (-0.58**, -0.38**, -0.12) (-0.78**, -0.29**, -0.12) 

(SIPI, EVI) (-0.72**, -0.25**, 0.21**) (-0.71**, -0.21**, 0.17*) (-0.78**, -0.20**, 0.20**) 
(PSRI, DVI) (-0.34**, -0.72**, -0.18*) (-0.40**, -0.60**, -0.39**) (-0.46**, -0.46**, -0.39**) 

(PSRI, RVI) (-0.44**, -0.41**, -0.23**) (-0.53**, -0.43**, -0.39**) (-0.56**, -0.34**, -0.39**) 

(PSRI, EVI) (-0.71**, -0.27**, 0.17*) (-0.64**, -0.26**, -0.36**) (-0.70**, -0.24**, -0.36**) 
(DVI, RVI) (0.34**, 0.70**, 0.18*) (-0.32**, 0.07, -0.06) (-0.30**, -0.02, -0.02) 

(DVI, EVI) (0.34**, 0.70**, 0.18*) (-0.60**, -0.01, 0.20**) (-0.68**, 0.01, 0.24**) 

(RVI, EVI) (-0.23**, 0.23**, 0.30**) (-0.64**, -0.05, 0.22**) (-0.65**, -0.04, 0.25**) 

Note: The three values from left to right in parentheses show the correlation coefficients at elongation stage, booting stage and flowering stage, respectively 

 
Table 4: Model of wheat LNC based on the combinations of two vegetation indexes through different modeling methods 

 
Period Modeling method Formula R² 

Elongation Stage Exponential function y = 1.4973e-0.456x 0.60 

Linear function y = -0.813x + 1.4879 0.60 
Logarithmic function No result. —— 

Polynomial function y = 0.9044x2 - 0.2476x + 1.5236 0.65 

power function No result. —— 
Booting Stage Exponential function y = 1.4054e-2E-04x 0.52 

Linear function y = -0.0003x + 1.313 0.52 

Logarithmic function No result. —— 
Polynomial function y = 6E-08x2 - 7E-05x + 1.5527 0.52 

power function No result. —— 

Flowering stage Exponential function y = 5.4621e-2.245x 0.42 
Linear function y = -4.1603x + 3.9133 0.45 

Logarithmic function y = -1.671ln(x) + 0.6614 0.41 

Polynomial function y = -10.114x2 + 4.8588x + 1.9753 0.43 
power function y = 0.9505x-0.893 0.37 
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which disclosed the general dynamic circulation of LNC in 

wheat growth process and was conducive to studying 

quality indexes (e.g., nitrogen concentration) of wheat 

grains in the mature period. Sensitive remote sensing 

variables of evaluating wheat LNC in different periods were 

found in the study (Fig. 1), which was one of highlights of 

this study. Remote sensing evaluations were relatively ideal 

after the elongation stage of wheat (Bannari et al., 2006; 

Miyaoka et al., 2012; Kowalik et al., 2014; Tan et al., 2015). 

Remote sensing evaluations of crop growth mainly focused 

on existing the relationships between remotely sensed 

parameters and agronomic indexes (Kawamura et al., 2005; 

Zhao et al., 2005; Tilling et al., 2007; Daniela et al., 2009; 

Clevers and Kooistra, 2011; Schlemmer et al., 2013). The 

involved evaluation models were easy to over relay on a 

specific remote sensing parameter, but could not cover more 

remote sensing trait. As a result, although existing models 

had high accuracy, space–time expansion would need to be 

improved. When the model accuracy was improved, remote 

sensing mechanism and repetition were enhanced. The 

reliability of models was evaluated by measured data. We 

developed a method for assessing wheat LNC with the 

combined models on large areas (Fig. 2), which was the 

second highlight of this study.  

Here, wheat LNC data in different crop period were 

superposed with geographic information. L However, 

surface feature recognition and accurate simultaneous 

sampling are susceptible to extreme weather, which will 

affect LNC evaluation at the field scale (Duncanson et al., 

2010). Further studies will focus on physiological reasons of 

wheat spectral changes with growth stages, and research on 

eliminating interference, optimize extraction methods, and 

achieve accurate extraction of wheat-planting area 

(Duncanson et al., 2010; Erdle et al., 2011). On the other 

hand, soil, field factors and crop species information should 

be considered so as to make remote sensing evaluation 

models more reliable and applicable. 

 

Conclusion 
 

Applying the models by combining two vegetation indexes 

could increase the accuracy of assessing LNC at key stages. 

The LNC at elongation, booting and flowering stages was 

well correlated with N (SIPI, EVI), D (PSRI, DVI) and N 

(SIPI, PSRI), respectively, which showed that N (SIPI, EVI), 

D (PSRI, DVI) and N (SIPI, PSRI) could be successfully 

employed as potential indicators of accurately assessing 

LNC at key stages. The combined models were superior to 

the one fold vegetation index model. The model accuracy 

increased by 9.9%, 15.2% and 14.7%, respectively. It might 

also explain the introduction of the compositions of two 

vegetation indexes into the model of assessing LNC in 

wheat. All in all, the combined models can not only improve 

the accuracy of assessing LNC in wheat in key periods, but 

 
 

Fig. 3: Spatial distribution of wheat LNC in the central region of Jiangsu Province in different periods (Upper: Elongation 

stage; Middle: Booting stage; Below: Flowering stage) 
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also provide a new application method for accurately 

assessing crops growth status in future. 
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