Full Length Article

The Pollen Morphology of some Lathyrus Spp. (Fabaceae) Taxa from Turkey

Fatma Gunes ${ }^{1}$
Kafkas Universty, Faculty of Arts and Science, Department of Biology, Kars, Turkey
Corresponding author's e-mail: drgunes@gmail.com

Abstract

In this study, 10 wild species of genus Lathyrus grown in Turkey L. niger (L.) Bernh. subsp. niger, L. palustris L. subsp. palustris, L. tuberosus L., L. sphaericus Retz., L. setifolius L., L. clymenum L., L. nissolia L., L. aphaca L. var. aphaca, L. aphaca var. affinis (Guss.) Arc, L. aphaca var. bifilorus Post were examined for pollen morphology. Preparations were made using non-acetolysed and Erdtman methods. The shapes, apertureties, structures and sculptures of pollen were observed by using light microscope (LM). The pollen grains were 3-zonocolporate, of spheroidal-subprolate-prolate types ($\mathrm{P} / \mathrm{E}=1.028$ 1.573), medium to large in size. Equatorial view; elliptical-obtuse-convex, polar view; circular to triangular-obtuse-convex. The smallest pollen grains belong to L. nissolia ($\mathrm{P}=32.791 / \mathrm{E}=24.747$ in non-acetolysed, $\mathrm{P}=40.508 / \mathrm{E}=28.444$ in Erdtman) and the longest to L. clymenum ($\mathrm{P}=52.418 / \mathrm{E}=35.815$ in non-acetolysed, $\mathrm{P}=58.604 / \mathrm{E}=46.332$ in Erdtman) taxa. The ornamentation was reticulate or slightly perforate-foveolate. The pollen morphology of species was also studied using a scanning electron microscope (SEM). In addition, some photographs included in this work were taken using both LM and SEM. © 2011 Friends Science Publishers

Key Words: Lathyrus; Pollen morphology; Turkey

INTRODUCTION

Lathyrus belongs to the Fabaceae family and tribe Vicieae (Adans.) DC. This genus is represented by 13 sections and 150 types worldwide, 10 sections and 62 species in Turkey and 78 taxa (Davis et al., 1970, 1998; Kupicha, 1983; Guner et al., 2000). The species of Lathyrus, which are economically high in value, are known for their resistance to drought. L. sylvestris is used to prevent erosion on sawn or burnt land in America (Whyte et al., 1953). In the east Anatolian region of Turkey the halberds of the L. tuberosus are consumed as food, whereas L. ochrus and L. sativus are cultivated (Gunes, 2006). Approximately 33 species are used for decorative purposes (Campbell, 1997).

The morphological properties of the pollen of taxa belonging to the Lathyrus species have been studied by various researchers both in Turkey and worldwide. In Turkey, L. digitatus (Aytug et al., 1971), L. undulatus, L. sylvestris and L. ochrus Gunes and Cirpici (1998), L. pratensis, L. layardii, L. laxiflorus subsp. laxiflorus, L. laxiflorus subsp. angustifolius and L. czeczottianus (Gunes \& Aytug, 2010), L. annuus, L. cicera, L. gorgoni var. pilosus and L. hirsutus (Gunes \& Cirpici, 2010) have been determined for pollen morphology of the taxa. Outside of Turkey e.g., in Russia, L. niger by Gapotchka and Chamara (1972) and Gapotchka (1974), L. palustris by Faegri and

Iversen (1989), L. latifolius and L. tuberosus by Halbritter (2000); in France, L. sylvestris, L. pratensis, L. maritimus, L. nissolia and L. montanus by Moore et al. (1991); in Pakistan, L. emodii, L. cicera, L. humulis and L. pratensis by Perveen and Qaiser (1998); and in Bulgaria, L. grandiflorus, L. latifolius, L. sylvestris, L. tuberosus by Tosheva et al. (2004), L. alpestris, L. aureus, L. linifolius, L. niger, L. palustris, L. transsilvanicus, L. venetus and L. vernus by Tosheva and Tonkov (2005), L. digitatus, L. filiformis, L. pallescens, L. pancicii and L. pannonicus by Tosheva and Tonkov (2007), have determined the morphological properties for pollen belonging to the different species. These researchers provided information on the pollen type (3-zonocolporate), pollen shape (spheroidal, subprolate, prolate), structure (tectate-infrastructurae) and ornemantation (reticulate-perforate-favolate) associated to the taxon belonging to the Lathyrus species. Tosheva and Tonkov (2007) L. filiformis, L. pallescens, L. pancicii determined a new pollen type seen in taxa called Lathyrus filiformis-type. Furthermore, Moore et al. (1991) also noted that the endexine thickness 2-3 times around the colpus and the porus and form a large costae formation.

The aim of this study was to determine through the use of LM and SEM, the extent to which morphological differences are well evaluated in 10 Turkish taxa of Lathyrus. This study also purpose to throw light on the problematic aspects of taxonomy and evolution.

MATERIALS AND METHODS

Ten taxa of Lathyrus were collected from their natural habitats in Turkey between 1996 and 2009. All collected specimen were identified and deposited at the herbarium of Marmara University, Faculty of Arts and Sciences (MUFE), Kafkas University, Faculty of Arts and Sciences, Department of Biology. Initially the samples gathered in European-Turkey were used for this study; however, samples were then collected throughout Turkey. With this reason Erdtman (1960) studies belong to the samples collected from European-Turkey. The observations on fresh pollen were made using preperations from samples collected from localities referred in Table I. The Wodehouse (1935) method was used for measurements carried out on taxa L. aphaca var. aphaca and L. aphaca var. affinis. The preparations were made in accordance with the Wodehouse and Erdtman methods. Using an Olympus CH20 light microscope (LM), 13 characteristics belonging to pollen were measured and their photographs were taken at 1000 X . For scanning electron microscopy, the pollen grains were mounted on stubs with double-sided adhesive tape and coated with gold. These coated pollen grains were examined and then photographed using JEOL-JSM-5200 SEM at a magnification of 2000-5000-13000 X. The pollen morphological descriptions followed the terminology of Moore et al. (1991) and Punt et al. (1994).

RESULTS

The results for these Lathyrus species are given in Tables II and III and pictorially presented in Figs. 1-4. However, the detailed results obtailed from Lm and SEM are given below:

L. niger subsp. niger

Pollen class: 3-zonocolporate.
Pollen group: Spheroidal $[\mathrm{P} / \mathrm{E}=1.135$ (Non-acetolysed), subprolate $\mathrm{P} / \mathrm{E}=1.285$ (Erdtman)].
Dimensions: Medium size $[\mathrm{PXE}=33.336$ X $29.363 \mu \mathrm{~m}$ (Non-acetolysed), 41.288 X $32.136 \mu \mathrm{~m}$ (Erdtman)].
Apertures: Apertures with an operculum (thickening of the middle of the aperture membrane). Ectoapertures-colpi: long, straight, shallow, borders distinct, widened above pori or more widened than pori in mesocolpium, clt $<$ plt, with acute ends, clg: $24.669 \mu \mathrm{~m}$ (Non-acetolysed), $30.097 \mu \mathrm{~m}$ (Erdtman), clt: $2.475 \mu \mathrm{~m}$ (Non-acetolysed), $1.508 \mu \mathrm{~m}$ (Erdtman). Endoapertures-pori: large, lalongate, borders distinct, protruding in mesocolpium, with an annulus (thickness sexine) and costae (thickness nexine: $3.48 \mu \mathrm{~m}$), plg: $7.540 \mu \mathrm{~m}$ (Non-acetolysed), $7.951 \mu \mathrm{~m}$ (Erdtman), plt: $10.324 \mu \mathrm{~m}$ (Non-acetolysed), $9.786 \mu \mathrm{~m}$ (Erdtman) and plt/plg= 0.730 (Non-acetolysed), 0.813 (Erdtman).
Outlines: Equatorial view - elliptic; polar view - circular.
Ornamentation: Reticulate, reticules medium and irregular, Colpus area and apocolpium are psilate or slightly reticulate.

Ex/int (Non-acetolysed): $\cong 1 / 1$
Exine (Erdtman): $\cong 2.5 \mu \mathrm{~m}$.

L. palustris. subsp. palustris

Pollen class: 3-zonocolporate.
Pollen group: Spheroidal [P/E= 1.028 (Non-acetolysed), subprolate $\mathrm{P} / \mathrm{E}=1.271$ (Erdtman)].
Dimensions: Medium size $[\mathrm{PXE}=36.917$ X $35.902 \mu \mathrm{~m}$ (Non-acetolysed), 45.396 X $35.724 \mu \mathrm{~m}$ (Erdtman)].
Apertures: Apertures with an operculum (thickening of the middle of the aperture membrane). Ectoapertures-colpi: long, nearly reaching the poles, straight, borders distinct, clt < plt, with acute ends, clg: 31.130 (Non-acetolysed), 41.180 (Erdtman) $\mu \mathrm{m}$, clt: $3.062 \quad$ (Non-acetolysed), 1.972 (Erdtman) $\mu \mathrm{m}$. Endoapertures-pori: large, lalongate in nonacetolysed, lolongate in Erdtman, borders distinct, protruding in mesocolpium, with an annulus (thickness sexine) and costae (thickness nexine: $3.48 \mu \mathrm{~m}$), plg: 9.454 (Non-acetolysed), 11.645 (Erdtman) $\mu \mathrm{m}$, plt: 10.643 (Nonacetolysed), 8.909 (Erdtman) $\mu \mathrm{m}$ and plt/plg $=0.888$ (Nonacetolysed), 1.307 (Erdtman).
Outlines: Equatorial view - elliptic to circular; polar view circular.
Ornamentation: Suprareticulate-foveolate, reticules medium and regular. Apocolpium and aperture area are psilate or slightly reticulate.

Ex/int (Non-acetolysed): $\cong 2 / 1$
Exine thickness_(Erdtman): $\cong 2 \mu \mathrm{~m}$.

L. tuberosus

Pollen class: 3-zonocolporate.
Pollen group: Spheroidal [$\mathrm{P} / \mathrm{E}=1.094$ (Non-acetolysed), subprolate $\mathrm{P} / \mathrm{E}=1.263$ (Erdtman)].
Dimensions: Medium size [PXE= 34.691 X 31.719 (Nonacetolysed), 46.800 X $37.062 \mu \mathrm{~m}$ (Erdtman)].
Apertures: Apertures with an operculum (thickening of the middle of the aperture membrane). Ectoapertures-colpi: long, straight, with obtuse or acute ends, thin above pori, clt < plt, clg: 24.508 (Non-acetolysed), 29.190 (Erdtman) $\mu \mathrm{m}$, clt: 3.503 (Non-acetolysed), 1.034 (Erdtman) $\mu \mathrm{m}$. Endoapertures-pori: not large, borders not distinct, protruding in mesocolpium, with an annulus (thickness sexine) and costae (thickness nexine: $4.46 \mu \mathrm{~m}$), slightly lalongate in non-acetolysed, slightly lolongate in Erdtman, plg: 9.048 (Non-acetolysed), $8.491 \mu \mathrm{~m}$ (Erdtman), plt: 9.605 (Non-acetolysed), $7.656 \mu \mathrm{~m}$ (Erdtman) and plt/plg=0.942 (Non-acetolysed), 1.109 (Erdtman).
Outlines: Equatorial view - elliptic to slighty rectangular-obtuse-convex; polar view - circular.
Ornamentation: Slightly reticulate-perforate, slightly distinct and irregular in mesocolpium. Apocolpium and aperture area are psilate.

Ex/int (Non-acetolysed): $\cong 1 / 1$
Exine thickness (Erdtman): $\cong 2 \mu \mathrm{~m}$.

L. sphaericus

Table I: Examined specimens, distribution in the world and locality

| Taxa | Section | Distribution | | Locality |
| :--- | :---: | :---: | :---: | :---: | :---: |
| in the world | | | | |\quad Herbarium and

Pollen class: 3-zonocolporate.
Pollen group: Spheroidal $[\mathrm{P} / \mathrm{E}=1.083$ (Non-acetolysed), subprolate $\mathrm{P} / \mathrm{E}=1.338$ (Erdtman)].
Dimensions: Medium size [PXE=33.959 X 31.349 (Nonacetolysed), 46.233 X $34.556 \mu \mathrm{~m}$ (Erdtman)].
Apertures: Apertures with an operculum (thickening of the middle of the aperture membrane). Ectoapertures-colpi: long, straight, with acute ends, nearly reaching the poles, borders distinct, clt < plt, clg: 26.351 (Non-acetolysed), 35.876 (Erdtman) $\mu \mathrm{m}$, clt: 1.566 (Non-acetolysed), 1.740 (Erdtman) $\mu \mathrm{m}$. Endoapertures-pori: large, slightly lalongate in non-acetolysed, lolongate in Erdtman, borders distinct, protruding in mesocolpium, with an annulus (thickness sexine) and costae (thickness nexine: $3.48 \mu \mathrm{~m}$), plg: 8.404 (Non-acetolysed), 9.090 (Erdtman) $\mu \mathrm{m}$, plt: 9.048 (Nonacetolysed), 7.445 (Erdtman) $\mu \mathrm{m}$ and plt/plg $=0.929$ (Non-
acetolysed), 1.221 (Erdtman) $\mu \mathrm{m}$.
Outlines: Equatorial view - elliptic to slighty rectangular-obtuse-convex; polar view - circular.
Ornamentation: Reticulate, reticules big, distinct and regular. Apocolpium and aperture area are psilate.

Ex/int (Non-acetolysed): $\cong 2 / 1$.
Exine thickness (Erdtman): $\cong 2 \mu \mathrm{~m}$.

L. setifolius

Pollen class: 3-zonocolporate
Pollen group: Spheroidal $[\mathrm{P} / \mathrm{E}=1.134$ (Non-acetolysed), subprolate $\mathrm{P} / \mathrm{E}=1.312$ (Erdtman)].
Dimensions: Medium size [PXE=34.394 X 30.334 (Nonacetolysed), 45.098 X 34.367 (Erdtman)].
Apertures: Apertures with an operculum (thickening of the middle of the aperture membrane). Ectoapertures-colpi:

Table II: (Non-acetolysed) Pollen characteritics of the examined taxa. M; arithmetic means, σ; Standard deviation, var.; variations, P : polar diameter, E : equatorial diameter, P / E : Pollen shape, Ex/int: the ratio of exine to the intin, clg: colpus length, clt: colpus width, plg: porus length regarding the poles, plt: porus width regarding the equatorial diameter, plg/plt: porus shape, t : one edge of polar triangle. Marks (except variations) are in micrometers ($\mu \mathrm{m}$). Variation numbers are bar numbers in LM

TAXA		P	E	P/E	Ex/int	clg	clt	plg	plt	plg/ plt	t
L. niger	M	33.336	29.363			24.669	2.475	7.540	10.324	0.730	16.163
	σ	± 1.031	± 0.838	1.135 (W)	$\cong 1 / 1$	± 1.157	± 0.885	± 0.563	± 0.693		± 0.895
	var.	11-12	10-11	Subprolate	-----	19-23	1-4	6-8	8-10		12-15
	M	36.917	35.902			31.130	3.062	9.454	10.643		11.811
L.palustris	σ	± 1.304	± 1.283	1.028 (W)	$\xrightarrow{\cong} \mathrm{Z} / 1$	± 1.480	± 1.131	± 0.989	± 0.856	0.888	± 1.798
	var.	12-14	11.5-13.5	Spheroidal		24-30	1-5	7-10	7-10		8-15
	M	34.691	31.719			24.508	3.503	9.048	9.605		13.035
L. tuberousus	σ	± 1.141	± 1.264	1.094 (W)	$\cong 1 / 1$	± 1.611	± 1.194	± 0.804	± 1.161	0.942	± 0.939
	var.	11-13	10-12	Spheroidal	-----	19-25	1-5	6-9	7-10		7-15
	M	33.959	31.349			26.351	1.566	8.404	9.048		14.979
L. sphaericus	σ	± 1.127	± 1.447	1.083 (W)	$\cong 2 / 1$	± 1.931	± 0.553	± 0.887	± 0.758	0.929	± 1.707
	var.	11-12	10-12	Spheroidal	-----	20-26	1-2	5-8	6-9		10-16
	M	34.394	30.334			25.520	2.958	7.059	11.335		
L. setifolius	Σ	± 0.964	± 1.190	1.134 (W)	$\cong 1 / 1$	± 1.591	± 0.858	± 0.643	± 0.881	0.623	nonmeasured
	var.	11-12	10-11	Spheroidal		19-25	1-4	5-7	8-11		
	M	52.418	35.815			37.623	3.109	7.511	11.629		
L. clymenum	σ	± 2.152	± 2.303	1.464 (W)	$\cong 3 / 1$	± 1.346	± 0.674	± 0.733	± 0.608	0.646	nonmeasured13.147
	var.	16-19.5	11-14	Prolate		30-35	1-4	5-8	9-11		
	M	32.791	24.747			21.885	1.889	5.966	8.253		
L. nissolia	σ	± 1.346	± 1.180	1.325 (W)	$\cong 3 / 2$	± 0.981	± 0.625	± 0.492	± 0.538	0.723	± 1.287
	var.	10-12	8-9	Subprolate		16-20	1-3	4-6	6-8		10-13
	M	40.126	26.767			27.701	1.9256	4.369	8.313		
L. aphaca var. aphaca	σ	± 1.637	± 1.054	1.499 W) Prolate	$\cong 2 / 1$	± 1.104	± 0.611	± 0.491	± 0.903	0.526	nonmeasured.
	var.	12.5-15	8-10			22-26	1-3	3-4	6-9		
	M	40.144	27.196			34.034	2.459	7.517	10.440		
L. aphaca	σ	± 1.485	± 1.396	1.476 (W)	$\cong 2 / 1$	± 2.044	± 0.792	± 0.935	± 0.984	0.720	nonmeasured
var.affinis	var.	15-17	10-12	Prolate	-----	26-33	1-3	5-8	7-11		
	M	45.604	31.720			31.738	1.879	6.612	10.718		
L. aphaca	σ	± 2.028	± 1.644	1.438 (W)	$\cong 2 / 1$	± 1.778	± 0.563	± 0.706	± 0.972	0.617	non-
var.biflorus	var.	16-19	11-13	Prolate	-----	25-31	1-2	5-7	8-11		measured.

Table III: (Erdtman) Pollen characteritics of the examined taxa. M; arithmetic means, σ; Standard deviation, var.; variations, P: polar diameter, E: equatorial diameter, P/E: Pollen shape, Ex: exine thickness, Ex/int: the ratio of exine to the intin, clg: colpus length, clt: colpus width, plg: porus length regarding the poles, plt: porus width regarding the equatorial diameter, plg/plt: porus shape, t: one edge of polar triangle, structure: exine, sculpture: ornamentation. Marks (except variations) are in micrometers ($\mu \mathrm{m}$). Variation numbers are bar numbers in LM

TAXA		P	E	P/E	Ex	clg	clt	plg	plt	plg/ plt	Costae	Structure	Sculpture
L. niger	M	41.288	32.136			30.097	1.508	7.951	9.786			Tectate	Reticulate, reticules big
	σ	± 1.615	± 1.539	1.285	$\cong 2.5$	± 1.816	± 0.423	± 0.465	± 1.032	0.813	3.48	infrastructurae	and regular
	var.	15-17	11-14	Subprolate		24-30	1-2	6-8	7-10				
L.palustris	M	45.396	35.724			41.180	1.972	11.646	8.909			Tectate	Reticules medium and
	σ	± 1.960	± 2.132	1.271	$\cong 2$	± 2.264	± 0.812	± 0.802	± 1.099	1.307	3.48	infrastructurae	regular
	var.	16-19	13-15	Subprolate		30-40	1-3	9-11	5-10				
L. tuberousus	M	46.800	37.062			29.190	1.034	8.491	7.656				Slightly reticulate,
	σ	± 1.109	± 2.984	1.263	$\cong 2$	± 1.591	± 0.756	± 0.541	± 0.656	1.109	4.64	Tectate	Perforate-foveolate,
	var.	16-20	12-16	Subprolate		23-28	0.5-1.5	7-8	6-8			infrastructurae	slightly distinct and irregular
L. sphaericus	M	46.234	34.556	1.338		35.876	1.740	9.090	7.445				Reticulate, reticules big
	σ	± 1.834	± 1.620	Subprolate-	$\cong 2$	± 1.875	± 0.519	± 1.008	± 0.904	1.221	3.48	Tectate	or medium size, distinct,
	var.	17-19	12-14	Prolate		27-34	1-2	6-9	5-8			infrastructurae	and regular
L. setifolius	M	45.098	34.367			35.243	2.404	7.934	12.203				Reticulate, reticules
	σ	± 3.942	± 2.878	1.312	$\cong 2$	± 1.261	± 0.694	± 0.598	± 0.742	0.650	4.64	Tectate	distinct and medium size
	var.	14-21	11-15	Subprolate		27-32	1.5-2.5	6-8	10-12			infrastructurae	
L.	M	58.604	46.332			47.166	3.109	8.236	14.245			Tectate	Reticulate, reticules
clymenum	σ	± 3.193	± 3.018	1.265	$\cong 1$	± 2.096	± 1.420	± 1.740	± 1.540	0.578	1.74	infrastructurae	regular, distinct and
	var.	20-26	15-20	Subprolate		37-45	1-5	4-11	10-15				medium size
L. nissolia	M	40.508	28.444			28.490	1.578	6.009	9.094				Reticules regular,
	σ	± 1.808	± 1.832	1.424	$\cong 2$	± 1.643	± 0.687	± 0.759	± 1.214	0.661	4.06	Tectate	medium size and distinct
	var.	14-17	10-13	Prolate		22-27	1-3	4-7	6-10			infrastructurae	
L. aphaca var. biflorus	M	44.824	32.656			33.269	1.462	6.287	8.770				Reticulate and Perforate-
	σ	± 3.058	± 1.957	1.373	$\cong 2$	± 2.588	± 0.605	± 0.871	± 1.230	0.717	3.48	Tectate	foveolate, reticules
	var.	15-20	11-14	Prolate		25-34	1-3	4-7	5-9			infrastructurae	medium size, distinct

long, nearly reaching the poles, straight, borders not distinct, with acute to obtuse ends, clt < plt, clg: $25.520 \mu \mathrm{~m}$ (Nonacetolysed), $35.243 \mu \mathrm{~m}$ (Erdtman), clt: $2.96 \mu \mathrm{~m}$ (Nonacetolysed), $2.404 \mu \mathrm{~m}$ (Erdtman). Endoapertures-pori: large, lalongate, protruding in mesocolpium, with an annulus (thickness sexine) and costae (thickness nexine: $4.64 \mu \mathrm{~m}$), plg: $7.059 \mu \mathrm{~m}$ (Non-acetolysed), $7.934 \mu \mathrm{~m}$ (Erdtman), plt: $11.335 \mu \mathrm{~m}$ (Non-acetolysed), $12.203 \mu \mathrm{~m}$ (Erdtman) and plt/plg $=0.623$ (Non-acetolysed), 0.650 (Erdtman).
Outlines: Equatorial view - elliptic; polar view - circular to slightly triangular.
Ornamentation: Reticulate, reticules distinct and medium size. Apocolpium reticulate, aperture area are psilate.

Ex/Int (Non-acetolysed): $\cong 1 / 1$.
Exine thickness (Erdtman): $\cong 2 \mu \mathrm{~m}$.

L. clymenum

Pollen class: 3-zonocolporate.
Pollen group: Prolate $[\mathrm{P} / \mathrm{E}=1.464$ (Non-acetolysed), subprolate $\mathrm{P} / \mathrm{E}=1.265$ (Erdtman)].
Dimensions: Medium size [PXE=52.418 X 35.815 (Nonacetolysed), 58.604 X 46.332 (Erdtman)].
Apertures: Apertures with an operculum (thickening of the middle of the aperture membrane). Ectoapertures-colpi: very long, nearly reaching poles, straight, borders distinct, with acute ends clt < plt, clg: $37.623 \mu \mathrm{~m}$ (Non-acetolysed), $47.166 \mu \mathrm{~m}$ (Erdtman), clt: $3.109 \mu \mathrm{~m}$ (Non-acetolysed), $3.109 \mu \mathrm{~m}$ (Erdtman). Endoapertures-pori: large, lalongate, protruding in mesocolpium, borders distinct, with an annulus (thickness sexine) and costae (thickness nexine: $1.74 \mu \mathrm{~m}$), plg: 7.511 (Non-acetolysed), 8.236 (Erdtman) $\mu \mathrm{m}$, plt: $11.629 \mu \mathrm{~m}$ (Non-acetolysed), $14.245 \mu \mathrm{~m}$ (Erdtman) and plt/plg $=0.646$ (Non-acetolysed), 0.578 (Erdtman).
Outlines: Equatorial view - elliptic; polar view - triangular to slightly circular.
Ornamentation: Reticulate, reticules, regular, distinct and medium size, collumellae are visible inside the lumina. Apocolpium slightly reticulate and aperture area are psilate.

Ex/int (Non-acetolysed): $\cong 1 / 2$.
Exine thickness (Erdtman): $\cong 1 \mu \mathrm{~m}$.

L. nissolia

Pollen class: 3-zonocolporate.
Pollen group: Subprolate $[\mathrm{P} / \mathrm{E}=1.325$ (Non-acetolysed), prolate $\mathrm{P} / \mathrm{E}=1.424$ (Erdtman)].
Dimensions: Medium size [P X E $=32.790$ X $24.747 \mu \mathrm{~m}$ (Non-acetolysed), 40.508 X $28.444 \mu \mathrm{~m}$ (Erdtman)].
Apertures: Apertures with an operculum (thickening of the middle of the aperture membrane). Ectoapertures-colpi: long, not straight, borders slightly distinct, with acute ends, clt < plt, clg: 21.885 (Non-acetolysed), $28.490 \mu \mathrm{~m}$ (Erdtman), clt: 1.890 (Non-acetolysed), $1.578 \quad \mu \mathrm{~m}$ (Erdtman). Endoapertures-pori: not large, lalongate,
protruding, borders distinct, protruding in mesocolpium, with an annulus (thickness sexine) and costae (thickness nexine: $4.04 \mu \mathrm{~m}$), plg: 5.966 (Non-acetolysed), 6.009 (Erdtman) $\mu \mathrm{m}$, plt: 8.253 (Non-acetolysed), 9.094 (Erdtman) $\mu \mathrm{m}$ and $\mathrm{plt} / \mathrm{plg}=0.723$ (Non-acetolysed), 0.660 (Erdtman) $\mu \mathrm{m}$.
Outlines: Equatorial view - elliptic to slighty rectangular-obtuse-convex; polar view - circular.
Ornamentation: Reticulate, reticules regular, medium size and distinct. Apocolpium psilate and aperture area are slightly reticulate.

Ex/int (Non-acetolysed): $\cong 3 / 2$.
Exine thickness (Erdtman): $\cong 2 \mu \mathrm{~m}$.

L. aphaca var. affinis

Pollen class: 3-zonocolporate.
Pollen group: Prolate ($\mathrm{P} / \mathrm{E}=1.476$).
Dimensions: Medium size ($\mathrm{PXE}=40.144 \mathrm{X} 27.196 \mu \mathrm{~m}$).
Apertures: Apertures with an operculum (thickening of the middle of the aperture membrane). Ectoapertures-colpi: long, straight, borders distinct, with acute ends, clt $<$ plt, clg: $34.034 \mu \mathrm{~m}$. clt: $2.459 \mu \mathrm{~m}$. Endoapertures-pori: large, borders distinct, lalongate, protruding in mesocolpium, with an annulus (thickness sexine) and costae can not measured, plg: $7.517 \mu \mathrm{~m}$, plt: $10.440 \mu \mathrm{~m}$ and $\mathrm{plt} / \mathrm{plg}=0.720$.
Outlines: Equatorial view - elliptic; polar view - circular.
Ornamentation: Reticulate, reticules medium size, distinct. Apocolpium and aperture area are psilate.

Ex/int: $\cong 2 / 1$.

L. aphaca var. aphaca

Pollen class: 3-zonocolporate.
Pollen group: Prolate ($\mathrm{P} / \mathrm{E}=1.499$).
Dimensions: Medium size ($\mathrm{PXE}=40.126$ X $26.767 \mu \mathrm{~m}$).
Apertures: Apertures with an operculum (thickening of the middle of the aperture membrane). Ectoapertures-colpi: not long, straight, borders not distinct, with acute ends, clt $<$ plt, clg: $27.701 \mu \mathrm{~m}$, clt: $1.926 \mu \mathrm{~m}$. Endoapertures-pori: small, lalongate, borders distinct, with an annulus (thickness sexine) and costae (thickness nexine) can not measured, plg: $4.369 \mu \mathrm{~m}$, plt: $8.313 \mu \mathrm{~m}$ and plt/plg= 0.526 .
Outlines: Equatorial view - elliptic; polar view - circular to triangular.
Ornamentation: Reticulate-perforate-foveolate, reticules medium and slightly distinct Apocolpium and aperture area are psilate or slightly reticulate.

Ex/int: $\cong 2 / 1$.

L. aphaca var. biflorus

Pollen class: 3-zonocolporate.
Pollen group: Prolate $[\mathrm{P} / \mathrm{E}=1.438$ (Non-acetolysed), prolate $\mathrm{P} / \mathrm{E}=1.373$ (Erdtman)].
Dimensions: Medium size $[\mathrm{PXE}=45.604 \mathrm{X} 31.720 \mu \mathrm{~m})$
(Non-acetolysed), 44.824 X $32.656 \mu \mathrm{~m}$ (Erdtman)].

Fig. 1: Pollen grains of Lathyrus niger (A, B), L. palustris (C, D), L. tuberosus (E, F), L. sphaericus (G, H), Lathyrus setifolius (I, J). A, C, E, G, I - equatorial view; B, D, F, H, J - polar view (LM). Bar denotes 15 $\mu \mathrm{m}$

Apertures: Apertures with an operculum (thickening of the middle of the aperture membrane). Ectoapertures-colpi: long, straight, borders slightly distinct in non-acetolysed, distinct in Erdtman, with acute ends, clt < plt, clg: 31.738 $\mu \mathrm{m}$ (Non-acetolysed), $32.688 \mu \mathrm{~m}$ (Erdtman), clt: $1.879 \mu \mathrm{~m}$ (Non-acetolysed), $6.545 \mu \mathrm{~m}$ (Erdtman). Endoapertures-pori: large, lalongate, borders distinct, protruding in mesocolpium, with an annulus (thickness sexine) and costae (thickness nexine: $3.48 \mu \mathrm{~m}$), plg: $6.612 \mu \mathrm{~m}$ (Nonacetolysed), $14.887 \mu \mathrm{~m}$ (Erdtman), plt: $10.718 \mu \mathrm{~m}$ (Nonacetolysed), $16.427 \mu \mathrm{~m}$ (Erdtman) and plt/plg= 0.617 (Nonacetolysed), 0.717 (Erdtman).
Outlines: Equatorial view - elliptic to slighty rectangular-obtuse-convex; polar view - circular to triangular.
Ornamentation: Reticulate-perforate-foveolate, reticules medium size, distinct Apocolpium and aperture area are psilate or slightly reticulate.

Ex/int (non-acetolysed): $\cong 2 / 1$.
Exine thickness $($ Erdtman $): \cong 2 \mu \mathrm{~m}$.

Fig. 2: Pollen grains of Lathyrus clymenum (A, B), L. nissolia (C, D), L. aphaca var. aphaca (E, F) L. aphaca var. affinis (\mathbf{G}, \mathbf{H}), L. aphaca var. biflorus (I, J). A, C, E, G, I - equatorial view; B, D, F, H, J-polar view (LM). Bar denotes $15 \mu \mathrm{~m}$

DISCUSSION
The pollen of the examined taxa were 3zonocolpotrate and its pollen groups were spheroidal, subprolate and prolate. The longest pollen grains belong to L. clymenum ($\mathrm{P}=52.418 / \mathrm{E}=35.815 \mu \mathrm{~m}$ in non-acetolysed \& $\mathrm{P}=58.604 / \mathrm{E}=46.332 \mu \mathrm{~m}$ in Erdtman) and the smallest L. nissolia $(\mathrm{P}=32.791 / \mathrm{E}=24.747 \mu \mathrm{~m}$ in non-acetolysed \& $\mathrm{P}=40.508 / \mathrm{E}=28.444 \mu \mathrm{~m}$ in Erdtman). While pollen belonging to L. niger subsp. niger, L. palustris subsp. palustris, L. tuberosus, L. sphaericus and L. setifolius are fresh, when they become fossilized in response to spheroidal they form subprolate. The fresh pollen for L. clymenum are prolate and its fossilized pollen are subprolate. The fresh pollen for L. nissolia are subprolate and its fossilized pollen are prolate. The fresh pollen and the fossilized pollen for L. aphaca var. bifilorus are prolate. When the pollen for L. clymenum are fossilized, they are shorter. The pollen length for L. aphaca. var. bifilorus was left unchanged however,

Fig. 3: Ornamentation in polen grains of Lathyrus niger (A, B), L. palustris (C, D), L. tuberosus (E, F) and L. sphaericus (G, H), Lathyrus setifolius (I, J). A, C, E, G, I - equatorial view; B, D, F, H, J - polar view (SEM)

the pollen lengths for other taxa lengthened after being fossilized (Table II \& III).

The pollen shape in equatorial view is elliptical-obtuse-convex, polar view circular to triangular-obtuseconvex as determined. The aperture sistem is consists of ectoapertures (colpi) and endoapertures (pori). There are operculum above apertures, usually colpus long, borders distinct, with acute ends and thick costae near pori. The longest colpi L. clymenum ($37.623 \mu \mathrm{~m}$, in non-acetolysed and $47.166 \mu \mathrm{~m}$ in Erdtman and the smallest L. nissolia ($21.885 \mu \mathrm{~m}$ in non-acetolysed and $28.490 \mu \mathrm{~m}$ in Erdtman was observed in the taxa. The narrowest colpi L. tuberosus ($1.034 \mu \mathrm{~m}$ in Erdtman, L. sphaericus ($1.566 \mu \mathrm{~m}$ in nonacetolysed), widest colpi L. clymenum (3.109 $\mu \mathrm{m}$ in Erdtman, L. tuberosus (3.503 $\mu \mathrm{m}$ in non-acetolysed) observed in the taxa. clt < plt in all taxa. The pore shape of examined taxa was lalongate. Even though different figures were observed for pollen types Non-acetolysed and Erdtman, their pore shapes did not change. Pori usually large, borders distinct, annulus distinct, thick costae formed near pori. The biggest pore determined in Erdtman was L. setifolius and L. clymenum, in non-acetolysed L. palustris and L. clymenum (Table III).

Fig. 4: Ornamentation in polen grains of Lathyrus clymenum (A, B), L. nissolia (C, D), L. aphaca var. aphaca (E, F), L. aphaca var. affinis (G, H), L. aphaca var. biflorus (I, J). A, C, E, G, I - equatorial view; B, D, F, H, J - polar view (SEM)

In the Erdtman method the exine thickness is $\cong 2.5 \mu \mathrm{~m}$ for L. niger subsp. niger, $\cong 1 \mu \mathrm{~m}$ for L. clymenum and $\cong 2 \mu \mathrm{~m}$ in other taxa. Generally, the ornamentation was reticulate. No significant differences were observed in the localities within the comparative study. Aytug et al. (1971) stated that the morphological properties of pollen did not change with environmental and geographical conditions. Our findings support the accuracy of this information. L. tuberosus (Tosheva et al., 2004), L. niger (Gapotchka \& Chamara, 1972; Gapotchka, 1974, Moore et al., 1991; Halbritter, 2000; Beug, 2004; Tosheva \& Tonkov, 2005) and L. palustris Tosheva and Tonkov (2005) are all researches that have carried out studies on the morphological properties of pollen for taxa. The pollen grains of L. niger is related to Lathyrus-type (Beug, 2004), while Moore et al. (1991) assign this pollen grains to Vicia cracca-type. Halbritter (2000) reported the presence of psilate ornamentation. Gapotchka and Chamara (1972) and Gapotchka (1974) reported that the grain size is $\mathrm{P} \times \mathrm{E}=34.7 \times 26.0 \mu \mathrm{~m}$, the ornamentation is perporate.

According to Tosheva and Tonkov (2005) the grain size is $\mathrm{P} \times \mathrm{E}=34.6 \times 26.6 \mu \mathrm{~m}$, the ornamentation is perporate foveolate. Our findings, Tosheva and Tonkov (2005) findings
$\mathrm{P} \times \mathrm{E}=33.336 \times 29.363 \mu \mathrm{~m}$ in non-acetolysed, 41.288 X $32.136 \mu \mathrm{~m}$ Erdtman and the ornamentation show compliance excluding these properties. L. palustris is Lathyrus-type acording to (Beug, 2004), while Moore et al. (1991) assign this pollen grains to Vicia cracca-type. According to Faegri and Iversen (1989) the pollen grains have distinct reticulum and heavy costae along the colpi. Tosheva and Tonkov (2005) reported that $\mathrm{P} \times \mathrm{E}=46.7 \times 36.6$, subprolate. Our results confirm the previous data (Table III). The thickest costae was observed in L. setifolius $(4.64 \mu \mathrm{~m})$ and the thinest costae was observed in L. clymenum $(1.74 \mu \mathrm{~m})$. When researches carried out to date are examined, among the Lathyrus taxa (Aytug et al., 1971; Moore et al., 1991; Perveen \& Qaiser, 1998; Gunes \& Cirpici, 1998, 2010; Tosheva et al., 2004; Gunes \& Aytug, 2010), for whose pollen morphological properties have been determined (44 taxa), it is observed that the longest pollen belongs to L. clymenum and the smallest pollen belongs to L. nissolia.

The differences in pollen morphology of 10 Lathyrus taxa could be an indication of their genetic differences. Cronquist (1968) reported that pollen sculpture types have valid morphological features in taxonomy. Thus, the taxonomic value of these taxa in Lathyrus taxa, as well as their polen morphology, could be a distinguishing criterion. Thus, morphological structures of pollen seem to be useful for differentiating taxa; thus, it is suggested that they could be of benefit in taxonomical studies.
Acknowledgement: The authors would like to thank to Scientific Research Project Commission of Marmara University (Project No: 1996 FEN-16) for financial support.

REFERENCES

Aytug, B., S. Aykut, N. Merev and G. Edis, 1971. Pollen Atlas of Plants from Environs of Istanbul (in Turkish). 1654/174, Kurtulmus press, İstanbul, Turkey
Beug, H., 2004. Leitfaden der Pollenbestimmung fur Mitteleuropa und angrenzende Gebiete. Göttingen, Germany
Campbell, C.G., 1997. Grass Pea: Lathyrus sativus L. Promoting the Conservation and Use of Underutilized and Neglected Crops 18. Institute of Plant Genetics and Crop Plant Research, Gatersleben/International Plant Genetic Resources Institute, Roma, Italy
Cronquist, A., 1968. The Evolution and Classification of the Flowering Plants. Thomas Nelson Ltd., Edinburgh, London

Davis, P.H., 1970. Lathyrus L. In: Davis, P.H. (ed.), Flora of Turkey and East Aegean Islands, Vol. 3. Edinburgh University Press, London
Davis, P.H., 1988. Flora of Turkey and East Aegean Islands, Vol. 10. Edinburgh University Press, London
Erdtman, G., 1960. The acetolysis method, a revised description. Upsala Svensk Botanic Tidskrift, 54: 561-564
Faegri, K. and J. Iversen, 1989. Textbook of Pollen Analysis. Blackwell Science Publication, Chichester
Gapotchka, G.P. and L.P. Chamara, 1972. The development of sporoderma in Lathyrus niger (L.). Bernh. Vest. Mosk. Univ. Ser. 6 Biol., 27: 50-54
Gapotchka, G.P., 1974. On the palynomorphology of the species of the tribe Vicieae from the family Fabaceae. Vest. Mosk. Univ. Ser. 6 Biol., 29: 93-98
Gunes, F. and A. Cirpici, 1998. Pollen morphology of some Lathyrus species (L. undulatus Boiss., L. sylvestris L., L. ochrus (L.) DC.) of Istanbul area (In Tukish). Proc. Symposium on Quercus Vulcanica and Flora of Turkey, pp: 431-440. Çantay Kitapevi, Laleli-Istanbul, Turkey
Gunes, F. and N. Özhatay, 2000. Lathyrus L. In: Güner, A., N. Özhatay, T. Ekim and K.H.C. Başer (eds.), Flora of Turkey and the East Aegean Islands, Vol. 11, pp: 92-94. Edinburgh University Press, Edinburgh
Gunes, F., 2006. The ethnobotanical importance of some Lathyrus (Fabaceae) species. Proc. the $I V^{\text {th }}$ International Congress of Ethnobotany (ICEB 2005), pp: 585-588. Efe Press, Istanbul, Turkey
Gunes, F. and B. Aytug, 2010. Pollen Morphology of the Genus Lathyrus (Fabaceae) Section Pratensis in Turkey. Int. J. Agric. Biol., 12: 96-100
Gunes, F. and A. Cirpici, 2010. Pollen morphology of the genus Lathyrus (Fabaceae) section Cicercula in Thrace (European Turkey). Acta Bot. Croatica, 69: 83-92
Halbritter, H., 2000. Lathyrus Latifolius, Lathyrus Tuberosus. In: Buchner, R. and M. Weber (eds.), PalDat-a Palynological Database: Descriptions, Illustrations, Identification and Information Retrieval
Kupicha, F.K., 1983. The infrageneric structure of Lathyrus. Royal Botanic Garden Edinburg, 41: 209-244
Moore, P.D., JA. Webb and M. Collinson, 1991. Pollen analysis. Blackwell Science, Publication, London
Perveen, A. and M. Qaiser, 1998. Pollen flora of Pakistan, 8. Leguninosae (subfamly: Papilionoideae). Turkish J. Bot., 22: 73-91
Punt, W., S. Blackmore and A. Nilsson Le Thomas, 1994. Glossary of Pollen and Spores Terminology. Lab. Paleobot. Palynol, Utrecht
Tosheva, A., S. Tonkov and N. Dimitrov, 2004. Pollen morphology of Bulgarian species from the section Lathyrus (Lathyrus, Fabaceae). Phytol. Balcanica, 9: 529-536
Tosheva, A. and S. Tonkov, 2005. Pollen morphology of Bulgarian species from the section Orobus (L.) Gren. Et Godr. (genus Lathyrus, Fabaceae). Acta Bot. Croatica, 64: 275-287
Tosheva, A. and S. Tonkov, 2007. Pollen morphology of the Bulgarian species from section Lathyrostylis (genus Lathyrus, Fabaceae). Phytol. Balcanica, 13: 393-400
Whyte, R.O., G. Nilson-Leissner and H.C. Trumble, 1953. Legumes in Agriculture. FAO, Rome, Italy
Wodehouse, R.P., 1935. Pollen Grains. McGraw-Hill, New York
(Received 26 October 2010; Accepted 04 December 2010)

