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Abstract 
 

Accurate assessment of crop disease severities is the key for precision application of pesticides to prevent disease infestation. 

In-situ hyperspectral imaging technology can provide high-resolution imagery with spectra for rapid identification of crop 

disease and determining disease infestation trend. In this study a hyperspectral imager was used to detect wheat powdery 

mildew with considering the impacts of wheat ears and the leaves under shadow to identify infected and healthy plant leaves. 

Through comparing the spectral differences between wheat ears and shadowed, healthy and infected plant leaves, 23 sensitive 

bands were chosen to distinguish different background targets. Five vegetation indices (VIs) and three red edge parameters 

were calculated based on screened sensitive bands. Then, 40 identification features were determined to distinguish different 

background factors and disease severities. Moreover, the classification and regression tree (CRT) was utilized to develop the 

prediction model of wheat powdery mildew. The identification accuracy was assessed by cross-validation with the accuracies 

that shadowed leaves can be perfectly recognized while the healthy and infected leaves, wheat ears could be identified with the 

rates of 98.4, 98.4 and 80.8%, respectively. For identification of different disease severities, the healthy leaves have the highest 

accuracy with 99.2%, while moderately and mildly infected leaves were determined as 88.2 and 87.8%, respectively. In 

overall, it was found that wheat ears could affect identification accuracy of wheat powdery mildew. At the same time, in order 

to provide guidance for application of pesticides, improved accuracy for detecting mildly infected disease is expected. © 

2016 Friends Science Publishers 
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Introduction 
 

Accurate assessment of crop diseases can provide 

decision support for the management of agricultural 

production. The assessment based on optical remote 

sensing could be valuable in reducing spray volume, 

improving crop quality, increasing yield, and serving for 

food security (Devadas et al., 2009). Wheat powdery 

mildew is caused by the Erysiphe graminis, which often 

infects the leaf blade and sheath. When the disease is severe, 

the stem and ear would also be infected. The disease reduces 

plant vigor and may result in being withered or even death 

by blocking leaf photosynthesis. This disease is especially 

harmful to wheat from the late heading growth stage to 

maturity (Giese et al., 1997). It is one of the most common 

wheat diseases in China. The disease has significantly 

negative effects on wheat yield and quality and surrounding 

environment (Huang et al., 2013). 

The studies of spectral analysis on rice (Qin and 

Zhang, 2005; Yang, 2010), wheat (Ashourloo et al., 2014a; 

Zhao et al., 2014), cotton (Ortiz et al., 2011; Zhang et al., 

2013) and corn crop (Chen et al., 2010) showed that 

pigments of plant leaves have sensitive response in the 

visible-light range of spectrum e.g., 400‒750 nm, while the 

leaf and canopy structures have sensitive response in the 

near-infrared (NIR) spectrum of 750‒1000 nm. The two 

spectrum ranges are the major sources of information for 

developing VIs (Vegetation Indices). The VIs developed in 

such a way have been widely used well in the scale of the 

crop leaf, canopy and field (Huang et al., 2007; Haboudane 

et al., 2008; Ashourloo et al., 2014b). Difference in spectral 

response of disease severities is the basis of optical 

diagnostics for crop diseases. Based on the spectral 

characteristics of disease, the sensitive bands of disease 
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identification are screened to build the indices to assess the 

diseases level. Devadas et al. (2009) calculated ten 

vegetation indexes to distinguish diseases of wheat 

(Devadas et al., 2009). The results showed that two 

vegetation indices, ARI (Anthocynanin Reflectance Index) 

and TCARI (Transformed Chlorophyll Absorption Ratio 

Index), could recognize wheat stripe rust accurately in the 

scale of leaf. Ashourloo et al. (2014c) used hyperspectral 

data to assess the different symptoms of wheat rust for 

wheat disease recognition using VIs (Ashourloo et al., 

2014c; Huang et al., 2015). They selected 455 nm, 605 nm 

and 695 nm as the disease sensitive bands and built a new 

VI of wheat rust detection. Huang et al. (2014) used the 

Relief-F algorithm to select the sensitive bands of wheat 

diseases. They proposed new VIs for wheat powdery 

mildew and wheat stripe rust. Their prediction model of 

wheat stripe rust was as high as 0.86. 

The models for wheat disease have high accuracies in 

disease recognition in the scale of plant leaf. However, the 

generalization and robustness of the models have to be 

verified in the scale of field with the data across crop 

varieties (Devadas et al., 2009; Ashourloo et al., 2014a; 

Huang et al., 2014). Up to now, there are still few literatures 

focused on crop disease recognition and assessment in the 

scale of crop canopy and field (Ashourloo et al., 2014b). 

Devadas et al. (2009) found that healthy, diseased and 

shadowed leaves, wheat ear, wheat stems and soil 

constitutes a complex environmental background for wheat 

disease diagnosis in the field (Devadas et al., 2009). By 

investigating the influences of wheat ears, shadowed leaves, 

soil and other background factors, the model accuracy could 

be improved for wheat disease assessment in the scale of 

canopy and field (Huang et al., 2014). Due to the limitations 

in the development of sensors and instruments, there are few 

reports on the influences of the background factors to crop 

disease recognition. In this study, we used a hyperspectral 

imager to measure and analyze the impacts of the different 

factors on recognizing wheat powdery mildew. Specifically, 

we determined sensitive bands and related transformed 

features for detection of powdery mildew through 

correlation analysis and independent testing; furthermore, 

we built and verified decision tree models to differentiate 

background factors and determine wheat disease severities. 

 

Materials and Methods 
 

Experimental Setup 

 

The experimental site is located at the experimental farm of 

Beijing Academy of Agriculture and Forestry Sciences (39° 

56'N, 116°16'E). The wheat cultivar, Jingshuang16, which is 

highly sensitive to powdery mildew, was chosen as research 

target. The wheat was planted in October 2013. Regular 

fertilizer and irrigation treatments were conducted during 

the growth season. The wheat powdery mildew commonly 

outbreaks in the heading stage and the early grain filling 

stage in the area of Beijing, China, when the temperature 

ranges from 15 to 20°C with high relative humidity over 

70%. 

 

Data Acquisition and Processing 

 

Equipment: The hyperspectral imager, SOC710VP 

(Surface Optics Corp., San Diego, CA, USA) was used to 

collect hyperspectral images of powdery mildew infected 

wheat plants. This instrument is a built-in scanning imaging 

system mounted with the C-Mount zoom lens, which is easy 

to adjust the amount of light exposure. When acquiring 

images each operation provides a pair of area-array images 

through the control of the software developed by the 

company, SOC. The technical parameters of the SOC710VP 

are shown in Table 1. In field operation the imager was 

placed at a portable and multifunction field observation 

bracket to capture canopy image after being adjusted to the 

optimal height and viewing angle through the built-in 

gradienter to ensure consistent field image collection. 

 

Hyperspectral Image Acquisition 

 

In this study, hyperspectral images of different disease 

severities were captured at the early and middle filling stage. 

The canopy images were collected from 10: 00 am to 13:30 

pm under sunny and breeze conditions. The data collection 

process was as:  

1). According to the severities of the disease, combined with 

the disease investigation criteria of the Ministry of 

Agriculture, China (Huang et al., 2014), the disease is 

divided into three levels, which includes a total of 30 

sampling areas, 10 sampling points for each level. 

2). According to the canopy height and the viewing angle of 

the instrument, the distance of 100 cm was set between lens 

to the surface of the canopy to cover the ground area of 50 

by 50 cm. 

3). Placed a reference board in the field of view to reduce 

the radiance correction error caused by sunlight before 

capturing each canopy image. 

 

Data Processing 

 

The hyperspectral image is processed in three steps: 

reflectance conversion, ROI (Region of Interest) extraction 

and image smoothing. In order to process data for model 

development, the data were further processed for selection 

of sensitive band, recognition feature extraction (VIs and 

calculation of red edge parameters). The data processing 

work flow is shown in Fig. 1. 

 

Reflectance Conversion 

 

The original DN (Digital Number) image was converted to a 

relative reflectance image through the third-party software 

ENVI (Exelis Visual Information Solutions, Boulder, CO, 
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USA) using the Flat Field (FF) method. In the study, the 

spectral values of relative reflectance were from 0 to 4. The 

FF (Flat Field) model was developed on the basis of the 

IARR (Internal Average Relative Reflectance) model. The 

IARR model was provided in the presence of a certain area 

of the image, and the mean distribution of the pure field 

units. Calculating the elements of pure feature in the mean 

spectrum, the spectrum of each image pixel values is 

divided by this mean spectrum, thereby achieving the 

relative reflectance. The expression of this model is:  
 

                   （1） 
 

Where, Rj(i) is the relative reflectance of j-th channel 

and the i-th pixel of the sensor; Na
j is the number of pixel of 

pure feature units in j-channel sensor; DNj(ia) indicates the 

DN value of ia –th pixel in j-channel sensor of the pure 

feature units. DNj(i) is the DN value of the i-th pixel in the j-

th channel of the sensor.  
 

Extracting Regions of Interest 
 

Due to one image consists of a variety of background 

targets; the relative reflectance of different targets can be 

extracted through the selection of ROIs. In this research, 

four kinds of ROIs were selected and saved, including 

infected-, healthy- and shadowed leaves (refer to block each 

blade caused by the shaded area), and wheat ears by using 

ENVI. 
 

Smoothing Images 
 

The moving average method was utilized to reduce the 

noise of hyperspectral image from the moisture and light in 

the field environment (Devadas et al., 2009). The smoothing 

step was set to 4. 
 

Selection of Sensitive Bands 
 

Due to each our hyperspectral image contains 128 bands, 

and between bands exist the strong correlation. Thus, 

processing all the band data all together would reduce the 

data processing efficiency and affect the recognition 

accuracy of wheat powdery mildew. Therefore, the data 

dimensionality should be reduced firstly. That means 

investigating the sensitivity of the 128 bands to identify the 

more sensitive and effective bands out of them. In this study, 

SPCA (Segmented Principal Component Analysis) was 

conducted to select the sensitive bands. Compared with the 

PCA (Principal Component Analysis), SPCA not only 

requires less amount of computation, but also avoids 

neglecting local characteristics. In addition, SPCA calculates 

the contribution of each band, not the main component of 

PCA, to reduce the dimensions. SPCA reserves the physical 

meaning of the reflectance of the field targets 

(Hemmateenejad et al., 2012).  

According to the adjacent band correlation 

coefficients of hyperspectral images, the SPCA divides 

all bands into band groups, followed by PCA converting 

within each band group. After the converting of the 

principal components, the contribution for each band is 

calculated by using the sum square of the correlation 

coefficient for each band and the main components. 

Finally, the representative of each sub-band space is 

selected according to the contribution. 

 
Band Operation 

 
The single band is difficult to accurately identify and 

evaluate wheat diseases as the contained information is 

very limited. Studies have shown that once several 

sensitive bands are confirmed, the wheat powdery 

mildew could be diagnosed precisely by calculating a 

vegetation index (Mahlein et al., 2012). Table 2 shows 

several disease vegetation indexes (Devadas et al., 

2009; Naidu et al., 2009; Ashourloo et al., 2014c). In 

order to enhance the disease features recognition; this 

study also used the red edge parameters, including the 

slope of the red edge, red edge position and the red 

edge area (Table 2) (Zhang et al., 2012). 

 
Extracting Recognition Features 

 
Sensitive bands were selected and we found that they 

were mostly located in the red and NIR band regions. 

Thus, there are many results of RVI (Ratio Vegetation 

Index) and NDVI (Normalized difference vegetation 

index), which contain the parameters is related or not 

obviously related to powdery mildew. In order to build 

the optimal assessment model, it is necessary to extract 

sensitive features of powdery mildew and background 

factors. The Stepwise Discriminant Analysis of Wilk’s 

lambda statistic was used for selection of disease 

recognition features using the software SPSS (SPSS 

Inc., Chicago, IL, USA) (Field, 2013).  

 
Model Development and Validation 

 
In this study, we used CRT (Classification and 

Regression Tree) growth method to establish and verify 

the model by using the SPSS software. The CRT tree 

divides the data into several sections as homogeneous 

as possible with the dependent variables. All dependent 

variable values are in the same terminal node which is a 

homogeneous, "pure" node (Rokach and Maimon, 

2008). The validation criteria were the split-sample 

select validation. That is, a randomly selected 70% 

samples were assigned as the training samples and the 

rest 30% were tested samples. Finally, the results of 

classification tree were output to evaluate recognition 

accuracy of the model. 
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Results 
 

Spectral Response of Different Background Factors 
 

Spectral response of diseased leaves: A wheat plant 

consists of the blade, stem, ear and other parts. There are 

different spectral response characteristics for different 

components in the specific growth stage, or in different 

stresses (Zhao et al., 2008). Hyperspectral data typically 

contain hundreds of spectral bands. The particular 

wavelength position can highlight detail spectral 

differences, which provides hints to distinguish disease 

stress and plant components (Mutka and Bart, 2014). Fig. 2b 

is the spectral response curves of diseased, healthy, 

shadowed leaves and wheat ear. The data were precisely 

extracted on the positions shown in Fig. 2a. 

Fig. 2 shows significant spectral differences for the 

four measured targets in visible region of 400‒700 nm, 

especially in the green and red bands (Zhang et al., 2012). 

Despite the shadowed leaf has the spectral response of 

vegetation, its magnitude is significantly lower than the 

other three, and the green peak of 550 nm is not prominent. 

Ear of wheat with reflection green peak and absorption 

red valley, also shows the obvious trend of red edge 

shifting to blue light direction. In the NIR region, there 

is a smooth high reflectance platform for healthy and 

shadowed leaves and wheat ear while the spectral values of 

diseased leaves go upward greatly. In addition, the 

reflectivity of healthy leaves and wheat ear is higher than 

diseased leaves. Near to water vapor absorption band of 960 

nm, the spectral responses of four targets are different also. 

There are significantly deeper absorption valleys for 

diseased and shadowed leaves. 

Table 1: Technical parameters of SOC710VP hyperspectral imager 

 
Spectral Coverage: 400‒1000 nm Pixels per line: 696  

Spectral Resolution: 4.68 nm Weight: 2.95 kg 
Spectral Bands: 128  Focal Length: Configurable (based on lens used) 

Dynamic Range: 12-bit Power: 12-VDC / 100-240VAC (50-60Hz) 

Lens Type: C-Mount Dimensions (HWL): 9.5 x 16.8 x 22cm  
Speed: 30 spatial lines per second  23.2 seconds/cube (696 by 520 cube)  

 

Table 2: The VIs for detection of wheat powdery mildew 

 
Index name Formula Relevant plant pigment Reference 

Ratio vegetation index RVI Reflectance ration of two bands, sensitive to disease stress Qin et al. 2005 

Normalized difference vegetation 
index 

NDVI NIR and Red are broad reflectance bands 775-825 nm, sensitive to disease 
stress 

Devadas et al. 2009 

Green normalized difference 

vegetation index 

GNDVI Defined as an index of plant “greenness” or photosynthetic activity, sensitive to 

disease stress 

Ashourloo et al. 2014 

Photochemical reflectance index PRI R531associated with state of the xanthophyll cycle and as xanthophyll 

pigments fulfill a photoprotective role, and key to light use efficiency (LUE) 

Huang et al. 2007 

Red-edge vegetation stress index RVSI ((R712 + R752)/2) – R732, sensitive to disease stress Naidu et al. 2009 
Red edge position REP REP represents certain wavelength position within the red edge (650—750 

nm). Sensitive to disease stress 

Devadas et al. 2009 

Dr Dr Dr is a maximum value of 1st order derivatives within the red edge (650—750 
nm). Sensitive to disease stress 

Ashourloo et al. 2014 

SDr SDr Defined by sum of 1st order derivative values within the red edge (650—750 

nm), sensitive to disease stress 

Ashourloo et al. 2014 

 

 
 

Fig. 1: Data processing work flow 
 

 
 

Fig. 2: Spectral response curves of diseased and healthy 

leaves and different background factors 

Figure 1: Data flow diagram 

 

Hyperspectral Imaging 

                                      Reflectance Conversion 

 

Data Preprocessing                     Extracting Regions of Interest 

 

                                     Smoothing Images 

 

Selection of Sensitive Band                    SPCA Operation 

 

 

Band Operation              VIs and Calculation of Red Edge Parameters 

 

 

 

Feature Selection for Recognition               Discriminant Stepwise Method 

 

 

Model Validation                       Disease Severity Recognition 

 

 

 

Different Field Objects Recognition  

 



 

Detecting Wheat Powdery Mildew using Proximal Hyperspectral Imager / Int. J. Agric. Biol., Vol. 18, No. 4, 2016 

 751 

Spectral response of disease severities: The absorption 

and reflection characteristics of vegetation would change in 

different spectral bands when the plants were infected with 

disease. Thus, the spectral responses of infected vegetation 

should be expressed as spectral features through certain data 

processing. This is the fundamental basis of optical remote 

sensing for assessment of disease severities of vegetation 

(Devadas et al., 2009; Zhang et al., 2012). 

Fig. 3b shows the spectral response curves of different 

disease severities for the wheat powdery mildew (healthy, 

mild infected and moderate infected). The data was 

measured at the locations as shown in (Fig. 3a and b) shows 

that the curves have no obvious green peak (550 nm) and 

red valley (670 nm). However, they present differences in 

reflective intensity. These differences are useful for 

differentiation between infected and healthy leaves. 

Compared with healthy and mild infected leaves, the 

reflectance of moderate infected leaves goes upward rapidly 

in the NIR range. In addition, all the curves demonstrate 

differences in the reflectance intensity. 

In overall, the spectral response difference not only 

presents between infected leaves and three background 

factors, but also in different disease severities, which 

provide a reference basis for further recognizing wheat 

powdery mildew based on sensitive band selection and 

feature parameter formulation. 
 

Recognition Features of Disease 
 

Sensitive band: Through calculating the contribution for all 

sample images from each subspace of each band using 

SPCA, we analyzed and compared variance significance to 

select sensitive bands between different background factors 

and disease severities. A total of 23 bands for the disease 

recognition are obtained (Table 3 and 4), which are 417 nm, 

423 nm, 503 nm, 508 nm, 534 nm, 544 nm, 658 nm, 679 

nm, 689 nm, 694 nm, 700 nm, 705 nm, 715 nm, 726 nm, 

752 nm, 768 nm, 774 nm, 789 nm, 827 nm, 864 nm, 897 

nm, 962 nm and 984 nm. 

As seen in Table 3 and 4, there are 17 sensitive bands 

are mainly located in the red and NIR range, including 10 

red edge bands. In addition, four bands are selected from 

green light region. Those are the ranges where the spectral 

responses are significantly different for different factors and 

disease severities. These bands are useful for computing 

disease recognition VIs and parameters, e.g. RVI, NDVI, 

GNDVI, PRI, RVSI, red edge position, red edge slope and 

red edge area (Table 2). 
 

Recognition Features 
 

Through screening over the results of VIs and red edge 

parameters using the stepwise discriminant method, 40 

features were determined to be used for distinguishing 

four background factors and three disease severities 

(Table 5 and 6). 

By analyzing disease recognition features in the Table 

5 and 6, the features could be used to simultaneously 

distinguish the disease with different background factors 

and different severities, which are in the interval of 689~726 

nm, the wavelength 768 nm and red edge area. The ratios of 

different combinations of feature bands are quite different. 

For example, 417 nm, 658 nm, and 789 nm were selected 

when distinguishing different background factors; and it 

does not appear in the recognizing different disease 

severities. However, the data in the Table 5 and 6 fully 

present a close relationship between red-edge spectral 

response and disease stress, which is consistent with other 

research results in the crop disease diagnosis (Devadas et 

al., 2009; Zhang et al., 2012). 
 

Calibration and Validation of Disease Recognition 

Models 
 

Based on the extracted recognition features, the discriminant 

models of different background factors and disease 

severities were respectively built using the CRT method. At 

the same time, the model accuracy to differentiate 

background factors was validated and shown in Table 7, 

while the accuracy to differentiate different disease 

severities is showed in Table 8. 

 
 

Fig. 3: Spectral curves of different disease severities 
 

 
 

Fig. 4: Images of different sampling Points for different 

background factors and disease severities (White object is 

the spectral reference board) 
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As seen in Table 7 and 8, shadowed samples can be 

perfectly (100%) identified in the process of the 

distinguishing of background factors. The recognition 

accuracies for infected and healthy samples are the same 

as 98.4%. The accuracy of wheat ear is relatively low as 

80.8%. In overall, the recognition model has a 95.6% 

accuracy and 95.2% kappa coefficient. In identification 

of powdery mildew severities, healthy samples had the 

highest recognition accuracy (99.2%); and the 

accuracies of the moderate and mild infected samples 

were 88.8 and 87.9%, respectively. Despite the 

discriminant accuracy of the model reaches 91.1% with 

84.6% kappa coefficient, it is still lower than the 

accuracy to differentiate background factors, which might 

be mainly caused by the 68.3% accuracy in differentiating 

the mild infected samples. 

The overall accuracy of two models is more than 90%, 

but the identification accuracy of wheat ear is obviously 

lower than the other three when differentiated background 

factors. The reason is that it has features of both healthy and 

more and more infected leaves, which interferes distinction 

of other factors. This can be clearly illustrated by the data in 

Table 7, where 91 samples of wheat ear are easily divided 

into the infected and healthy samples. For the recognition 

model of different disease severities, the accuracy of healthy 

samples is much higher than the other two infected levels, 

which means the diagnosis method is feasible for detecting 

the stress of wheat powdery mildew. 

Table 3: Variance analysis of sensitive wavebands between infected leaves and background targets 
 

Factor Sensitive 

band (nm) 

Infected leaves Healthy leaves Shadowed leaves Wheat ear 

Healthy Shadowed Wheat ear Infected Shadowed Wheat ear Infected Healthy Wheat ear Infected Healthy Shadowed 

417 Ave 0.267* 0.148* 0.070* -0.267* -0.121* -0.197* -0.148* -0.121* -0.141* -0.070 0.020* 0.141* 

p 0.000 0.000 0.066 0.000 0.000 0.000 0.000 0.000 0.000 0.066 0.000 0.000 
423 Ave 0.383* 0.162* 0.013* -0.038* 0.124* -0.025* -0.162* -0.124* -0.149* -0.132* -0.021* 0.149* 

p 0.000 0.000 0.001 0.000 0.000 0.000 0.000 0.000 0.000 0.001 0.000 0.000 

503 Ave 0.139* 0.296* -0.028* -0.139* -0.157* -0.167* -0.296* -0.157* -0.324* 0.028* 0.167* 0.324* 
p 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 

508 Ave 0.137* 0.304* -0.054* -0.137* 0.167* -0.192* -0.304* -0.167* -0.359* 0.541* 0.192* 0.359* 

p 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 
534 Ave 0.096* 0.330* -0.197* -0.096* 0.234* -0.293* -0.330* -0.234* -0.527* 0.197* 0.293* 0.527* 

p 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 

544 Ave 0.098* 0.342* -0.218* -0.098* 0.244* -0.315* -0.342* -0.244 -0.560* 0.218* 0.315* 0.560* 
p 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 

658 Ave 0.337* 0.509* 0.100* -0.337* 0.172* -0.237* -0.509* -0.171* -0.409* -0.100* 0.237* 0.409* 

p 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 
679 Ave 0.353* 0.542* 0.147* -0.353* 0.189* -0.205* -0.542* -0.189* -0.394* -0.149* 0.205* 0.394* 

p 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 

689 Ave 0.346* 0.573* 0.039* -0.346* 0.227* -0.307* -0.573* -0.227* -0.534* -0.038* 0.307* 0.534* 
p 0.000 0.000 0.001 0.000 0.000 0.000 0.000 0.000 0.000 0.001 0.000 0.000 

694 Ave 0.321* 0.602* -0.051* -0.321* 0.281* -0.372* -0.602* -0.281* -0.653* 0.051* 0.372* 0.653* 

p 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 
700 Ave 0.266* 0.613* -0.154* -0.266* 0.346* -0.420* -0.613* -0.346* -0.766* 0.154* 0.420* 0.766* 

p 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 
705 Ave 0.203* 0.623* -0.260* -0.203* 0.420* -0.463* -0.623* -0.420* -0.883* 0.260* 0.463* 0.883* 

p 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 

715 Ave 0.053* 0.634* -0.417* -0.053* 0.581* -0.471* -0.634* -0.581* -1.051* 0.417* 0.471* 1.051* 
p 0.002 0.000 0.000 0.002 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 

726 Ave -0.18* 0.510* -0.504* 0.178* 0.688* -0.326* -0.510* -0.688* -1.014* 0.504* 0.326* 1.014* 

p 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 
752 Ave -0.357* 0.419* -0.441* 0.357* 0.776* -0.085* -0.419* -0.776* -0.860* 0.441* 0.085* 0.860* 

p 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 

768 Ave -0.392* 0.385* -0.430* 0.392* 0.777* -0.038* -0.385* -0.777* -0.815* 0.430* 0.038* 0.815* 
p 0.000 0.000 0.000 0.000 0.000 0.115 0.000 0.000 0.000 0.000 0.115 0.000 

774 Ave -0.401* 0.382* -0.437* 0.401* 0.782* -0.036* -0.382* -0.782* -0.819* 0.437* 0.036* 0.819* 

p 0.000 0.000 0.000 0.000 0.000 0.148 0.000 0.000 0.000 0.000 0.148 0.000 

789 Ave -0.417* 0.424* -0.418* 0.417* 0.84* -0.001* -0.424* -0.841* -0.842* 0.418* 0.001* 0.842* 

p 0.000 0.000 0.000 0.000 0.000 0.977 0.000 0.000 0.000 0.000 0.977 0.000 

827 Ave -0.401* 0.479* -0.376* 0.401* 0.880* 0.025* -0.479* -0.880* -0.856* 0.376* -0.025* 0.856* 
p 0.000 0.000 0.000 0.000 0.000 0.374 0.000 0.000 0.000 0.000 0.374 0.000 

864 Ave -0.381* 0.605* -0.335* 0.381* 0.986* 0.046* -0.605* -0.986* -0.940* 0.335* -0.459* 0.940* 

p 0.000 0.000 0.000 0.000 0.000 0.094 0.000 0.000 0.000 0.000 0.094 0.000 
897 Ave -0.371* 0.735* -0.267* 0.371* 1.106* 0.104* -0.735* -1.106* -1.003* 0.267* -0.104* 1.003* 

p 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 

962 Ave -0.289* 0.657* -0.095* 0.289* 0.946* 0.194* -0.657* -0.946* -0.752* 0.095* -0.194* 0.752* 
p 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 

984 Ave -0.305* 0.764* -0.133* 0.305* 1.069* 0.172* -0.764* -1.069* -0.897* 0.133* -0.172* 0.897* 

p 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 

Note: The symbol * means the significance high than 0.05. (Ave – mean value; p – significant probability level) 
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Discussion 
 

Impact of Background Factors on Diagnosis of Wheat 

Powdery Mildew 

 

Several images of different disease severities are presented 

from Fig. 4a to Fig. 4d and Fig. 4e to Fig. 4h and growing 

stages are also shown from Fig. 4 (a, b, c and d) to Fig. 4 (e, 

f, g and h). As seen in Fig. 4, the disease diagnosis is related 

to wheat ear, healthy, diseased, and shadowed leaves, stem 

and soil. Therefore, the background factors could reduce the 

accuracy of disease assessment. It was pointed out that the 

inversion accuracy of plant nutrition estimation based on 

remote sensing could be improved after the reduction of 

background influences (Huete, 1988; Zhao et al., 2008; 

Chen et al., 2010). However, there are few studies on this 

issue for crop disease recognition and detection. This study 

investigated the influence of multiple background factors on 

diagnosis of wheat powdery mildew. The results showed 

that healthy and infected leaves have a high degree of 

recognition accuracy of 98.4%. The shadowed leaves 

were identified 100%, which indicated that they have 

very little impact on disease identification. However, 

wheat ears were often falsely being recognized as the 

infected leaves with the probability up to 15.9%. Thus, 

wheat ear is an important factor to reduce disease 

diagnosis accuracy and should be more concerned in disease 

monitoring by optical remote sensing. 

Table 4: Variance analysis of sensitive wavebands between different disease severities 
 

Factor sensitive bands (nm) Healthy Mild Moderate 

Mild Moderate Healthy Moderate Healthy Mild 

417 Ave -0.020* -0.028* 0.020* -0.008 -0.028* 0.008 
p 0.001 0.000 0.001 0.128 0.000 0.128 

423 Ave -0.024* -0.042* 0.024* -0.018* 0.042* 0.018* 

p 0.000 0.000 0.000 0.001 0.000 0.001 
503 Ave -0.105* -0.148* 0.104* -0.043* 0.148* 0.043* 

p 0.000 0.000 0.000 0.000 0.000 0.000 

508 Ave -0.106* -0.146* 0.106* -0.040* 0.146* 0.040* 
p 0.000 0.000 0.000 0.000 0.000 0.000 

534 Ave -0.084* -0.099* 0.084* -0.015 0.099* 0.015 

p 0.000 0.000 0.000 0.171 0.000 0.171 
544 Ave -0.087* -0.101* 0.087* -0.014 0.101* 0.014 

p 0.000 0.000 0.000 0.221 0.000 0.221 

658 Ave -0.220* -0.369* 0.220* -0.150* 0.369* 0.150* 
p 0.000 0.000 0.000 0.000 0.000 0.000 

679 Ave -0.222* -0.389* 0.222* -0.167* 0.389* 0.167* 

p 0.000 0.000 0.000 0.000 0.000 0.000 

689 Ave -0.225* -0.379* 0.225* -0.154* 0.379* 0.154* 

p 0.000 0.000 0.000 0.000 0.000 0.000 

694 Ave -0.204* -0.353* 0.204* -0.149* 0.353* 0.149* 
p 0.000 0.000 0.000 0.000 0.000 0.000 

700 Ave -0.165* -0.294* 0.165* -0.129* 0.294* 0.129* 

p 0.000 0.000 0.000 0.000 0.000 0.000 
705 Ave -0.113* -0.228* 0.113* -0.115* 0.228* 0.115* 

p 0.000 0.000 0.000 0.000 0.000 0.000 
715 Ave 0.012 -0.071* -0.012 -0.083* 0.071* 0.083* 

p 0.652 0.000 0.652 0.000 0.000 0.000 

726 Ave 0.186* 0.176* -0.186* -0.011 -0.176* 0.011 
p 0.000 0.000 0.000 0.690 0.000 0.690 

752 Ave 0.380* 0.350* -0.380* -0.030 -0.350* 0.030 

p 0.000 0.000 0.000 0.224 0.000 0.224 
768 Ave 0.398* 0.391* -0.398* -0.007 -0.391* 0.007 

p 0.000 0.000 0.000 0.782 0.000 0.782 

774 Ave 0.396* 0.402* -0.396* 0.006 -0.402* -0.006 
p 0.000 0.000 0.000 0.835 0.000 0.835 

789 Ave 0.407* 0.419* -0.407* 0.012 -0.419* -0.012 

p 0.000 0.000 0.000 0.663 0.000 0.663 
827 Ave 0.413* 0.398* -0.103* -0.016 -0.398* 0.016 

p 0.000 0.000 0.000 0.591 0.000 0.591 

864 Ave 0.431* 0.367* -0.431* -0.064* -0.367* 0.064* 
p 0.000 0.000 0.000 0.026 0.000 0.026 

897 Ave 0.428* 0.355* -0.428* -0.073* -0.355* 0.073* 

p 0.000 0.000 0.000 0.012 0.000 0.012 
962 Ave 0.363* 0.269* -0.363* -0.094* -0.269* 0.094* 

p 0.000 0.000 0.000 0.008 0.000 0.008 

984 Ave 0.409* 0.276* -0.409* -0.133* -0.276* 0.133* 
p 0.000 0.000 0.000 0.000 0.000 0.000 

Note: The symbol * means the significance high than 0.05. (Ave – mean value; p – significant probability level) 
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At present, the field-scale crop disease diagnosis using 

the images acquired from space-borne and airborne are 

limited by the 1‒30 m spatial resolution (Franke et al., 

2008; Mewes et al., 2011; Mirik et al., 2011). Such remote 

sensing mainly focuses on large-scale monitoring and 

forecasting of crop diseases and it does not consider the 

impact of wheat ears on disease assessment. Non-imaging 

hyperspectral techniques have the advantages of hundreds 

of bands, which can sensitively detect crop stress 

(Muhammed, 2005; Feng et al., 2013). However, they still 

cannot reduce the impacts of soil and wheat ears on disease 

diagnosis with different background factors. Although some 

leaf-scale models of crop diseases have been built in the 

laboratory, the models still need to be verified in the field 

conditions (Yuan et al., 2013; Ashourloo et al., 2014; Huang 

et al., 2014). 

To sum up, there has been a great progress in crop 

diseases diagnosis in the scale of leaf, canopy and field. 

However, still little attention has been paid for crop disease 

remote sensing under multiple background factors with the 

limitations of the observation instruments. Although this 

study qualitatively analyzed spectral differences of different 

background factors with the unification of image and 

spectra, the diagnosis model of wheat powdery mildew 

without the influence of wheat ear has not established due to 

limited sampling points. That is the problem we will focus 

on in the future. 

 

Impact of Disease Severities Determination on Spray 

Control 

 

Timely and accurately recognition of disease severities based 

Table 5: Recognition features between infected leaves and background factors 
 

RVI NDVI REP 

726 nm/689 nm 705 nm/694 nm 700 nm/679 nm 715 nm/705 nm NIR Red Red edge area 

679 nm/503 nm 715 nm/700 nm 962 nm/679 nm 827 nm/726 nm 768 nm 715 nm 

774 nm/679 nm 544 nm/503 nm 544 nm/423 nm 897 nm/503 nm 768 nm 705 nm 
768 nm/694 nm 726 nm/705 nm 864 nm/715 nm 984 nm/715 nm 774 nm 689 nm 

715 nm/694 nm 897 nm/544 nm 774 nm/503 nm 897 nm/752 nm 864 nm 700 nm 

962 nm/726 nm 694 nm/544 nm 726 nm/700 nm 694 nm/679 nm 897 nm 726 nm 
700 nm/508 nm 534 nm/508 nm 726 nm/715 nm 897 nm/534 nm - - 

679 nm/534 nm 705 nm/689 nm 752 nm/715 nm 774 nm/689 nm - - 

726 nm/544 nm RVSI - - 

 

Table 6: Identification features of different disease severities 
 

RVI NDVI REP 

705 nm/694 nm 705 nm/689 nm 726 nm/679 nm 700 nm/534 nm 897 nm 726 nm Red edge area; 

 
Red edge 

position 

705 nm/544 nm 897 nm/752 nm 715 nm/658 nm 984 nm/417 nm 768 nm 700 nm 
774 nm/417 nm 700 nm/679 nm 715 nm/705 nm 984 nm/726 nm 768 nm 715 nm 

679 nm/508 nm 689 nm/503 nm 700 nm/503 nm 726 nm/705 nm 768 nm 689 nm 

768 nm/726 nm 700 nm/689 nm 705 nm/679 nm 768 nm/679 nm 864 nm 705 nm 
864 nm/544 nm 962 nm/715 nm 752 nm/715 nm 715 nm/534 nm 864 nm 726 nm 

897 nm/726 nm 864 nm/689 nm 827 nm/726 nm 789 nm/508 nm - - 

827 nm/544 nm 694 nm/679 nm 705 nm/508 nm 752 nm/726 nm - - 

 

Table 7: Recognition accuracy between infected leaves and background factors 
 

Observed Value Predicted Value 

Diseased Samples Healthy Samples Shadowed Samples Wheat Ear Mapping Accuracy 

Diseased Samples 1594 6 0 20 98.4% 
Healthy Samples 8 492 0 0 98.4% 

Shadowed Samples 0 0 583 0 100% 

Wheat Ear 91 19 0 464 80.8% 
User’s Accuracy 94.2% 95.2% 100% 95.9% - 

Overall Accuracy 95.6% 

Kappa Coefficient 95.2% 

 

Table 8: Diagnosis accuracy of different disease severities 
 

Observed value Predicted value 

Healthy samples Mild infection Moderate infection Mapping accuracy 

Healthy Samples 496 0 4 99.2% 
Mild Infection 3 306 39 87.9% 

Moderate Infection 1 142 1129 88.8% 

User’s Accuracy 99.2% 68.3% 96.3% - 
Overall Accuracy 91.1% 

Kappa Coefficient 84.6% 
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on remote sensing can provide decision support for site-

specific crop disease treatment, which is especially important 

in reducing spray volume and improving pest control effect 

to serve for grain security. However, presently there is almost 

no guidance for spraying pesticides after recognizing crop 

disease severities from remote sensing observation. This 

situation might be caused by (1) low spatial resolution and 

large observation scale. Space-borne and airborne remote 

sensing is mainly used for large-scale monitoring and 

forecasting of crop diseases. It is easily to assess the loss 

caused by disease infestation in the severely infected period 

but not easily to provide right spray guidance in the optimal 

plant protection stage (Qin and Zhang, 2005; Mewes et al., 

2011); (2) In order to obtain stable spectral responses of crop 

diseases, studies tended to conduct in the leaf scale in 

laboratory condition to get rid of the complex crop growth 

environment in the field. There have been quite a number of 

studies on early diagnosis of wheat powdery mildew but they 

were barely verified under the field conditions (Devadas et 

al., 2009; Huang et al., 2013; Ashourloo et al., 2014). This 

resulted in that the most of the previous studies cannot be 

used in spray control guidance. 

In this study, disease severities (healthy, mild, and 

moderate) of wheat powdery mildew were diagnosed in the 

field using high-resolution and hyperspectral imaging. It 

showed that the recognition accuracy of moderate infection 

is 88.8% and the accuracy of mild infection is 87.9%, which 

illustrates that the different severities of wheat powdery 

mildew can be better identified. However, because mild 

infected samples are easy to falsely recognize as healthy and 

moderate infected samples, it is still a challenge to detect 

mild infection in the field. Similar results were also shown 

in other reported studies (Qin and Zhang, 2005; Huang et 

al., 2013). Therefore, in order to effectively direct spray 

control of wheat powdery mildew, data in the early-infected 

stage should be measured and collected. 

 

Conclusion 
 

In this study, a hyperspectral imager was used to detect 

wheat powdery mildew with considering the impacts of 

wheat ears and the leaves under shadow to identify infected 

and healthy plant leaves. Through comparing and extracting 

the identification features between wheat ears and 

shadowed, healthy and infected plant leaves, we found that 

shadowed leaves can be perfectly recognized while the 

healthy and infected leaves, wheat ears could be identified 

with the rates of 98.4, 98.4 and 80.8%, respectively. For 

identification of different disease severities, the healthy 

leaves have the highest accuracy of 99.2%, while 

moderately and mildly infected leaves were determined as 

88.2 and 87.8%, respectively. Finally it was also found that 

wheat ears could affect identification accuracy of wheat 

powdery mildew. In overall, these results provide important 

helpful for the assessment of crop diseases in the field using 

optical remote sensing.  
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